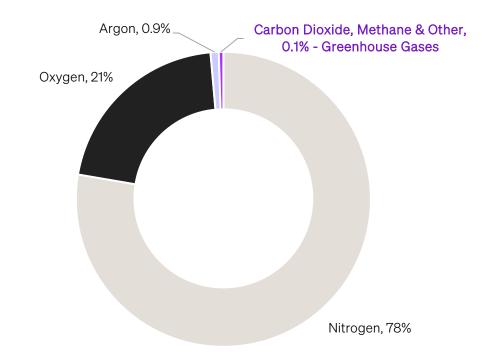
The Global Energy Transition

SOCIAL CAPITAL_

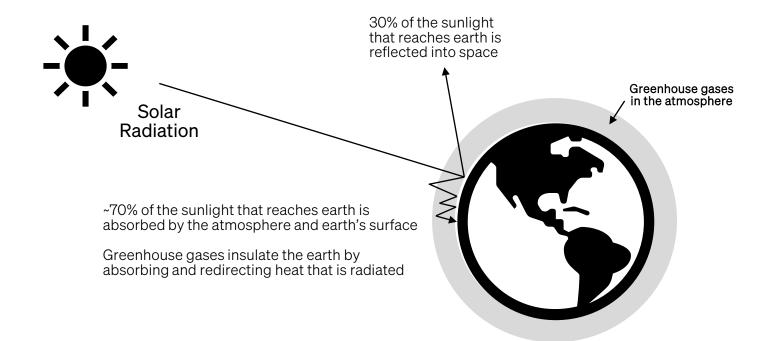
How to Read This Presentation

- This is the first of two presentations covering the global energy transition.
- This presentation provides an overview of the global climate challenge and potential solutions to reach net-zero emissions.
- The second presentation provides an overview of global climate legislation, with a focus on the U.S. Inflation Reduction Act (IRA) and its implications.
- Each section of this presentation builds on the prior and assumes no prior knowledge about the discussed topic. At the end of each section, there will be a slide with links to further short readings and YouTube videos to reinforce your learning.
- By the end of this presentation, you should have a good understanding of the global climate challenge, potential solutions, and some of the tradeoffs associated with each.

Table of Contents

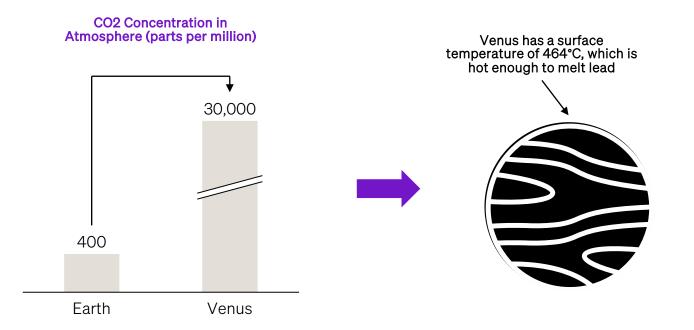

Cha	pter	Page
01	An overview of climate change	04
02	Sources of U.S. emissions	28
03	Decarbonizing transportation	33
04	Decarbonizing power generation	49
05	Decarbonizing industry	103
06	Decarbonizing commercial & residential	116
07	Decarbonizing agriculture	123
08	Offsetting other emissions	139
09	Wrapping up	145

CHAPTER 01


An overview of climate change

The environment 101

The Earth's Atmosphere Is Composed of Various Gases Including 'Greenhouse Gases'


Greenhouse Gases in the Atmosphere Are Necessary to Keep the Earth Warm

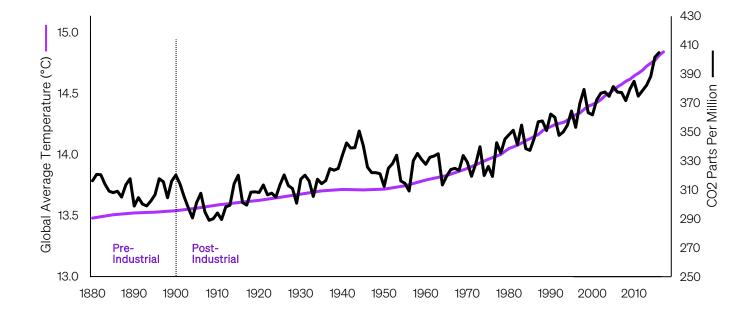
SOCIAL CAPITAL_

But Excessive Concentration of Greenhouse Gases Can Lead to Dangerous Warming

Venus is an extreme example of what happens when the concentration of greenhouses gases is too high

SOCIAL CAPITAL

There Are Four Main Types of Greenhouse Gases


'Parts per million' refer to the number of greenhouse gas molecules per million molecules of dry air

Lowest warming potential, highest concentration

Highest warming potential, lowest concentration

	Carbon Dioxide (CO2)	Methane (CH4)	Nitrous Oxide (N2O)	Fluorinated Gases
Concentration in atmosphere	~420 parts per million	~1,900 parts per billion	~330 parts per billion	~100 parts per trillion
Lifetime in atmosphere	~300-1,000 years	~12 years	~110 years	A few weeks to thousands of years
Removal from atmosphere	Removed by ocean, forest and other carbon sinks	Removed by oxidation into carbon dioxide and water	Removed by sink or destroyed through chemical reactions	Gradually broken down by UV in upper atmosphere

Global Temperatures Have Increased as the Concentration of Greenhouse Gases in the Atmosphere Has Risen

Dive Deeper...

Further Reading & Watching

Reading:

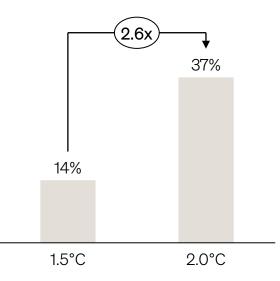
- <u>The Atmosphere: Getting a Handle on Carbon Dioxide</u> NASA
- <u>Greenhouse Effect 101</u> National Resources Defense Council
- <u>Climate Change: Global Temperature</u> Climate.gov
- <u>Scientists Assess Potential For Super Greenhouse Effect in Earth's Tropics</u> NASA

Watching:

- <u>The Carbon Cycle</u> Ted Ed
- <u>"What is the Carbon Cycle"</u> NOAA
- <u>Greenhouse Effect and Greenhouse Gases</u> Khan Academy
- <u>Global Temperature Anomalies from 1880 to 2019</u> NASA

Why do global temperatures matter?

A warmer climate changes weather patterns to make wet areas wetter, and dry areas drier. This could lead to extensive flooding in some regions, and water shortages in others

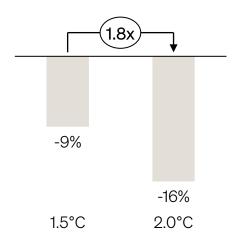

Leading economies have committed to reaching net-zero emissions by 2050 to keep warming to 1.5°C above pre-industrial temperatures

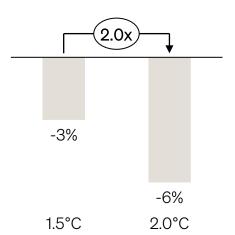
While even 1.5°C of warming could lead to harmful global consequences...

The implications of 2°C of warming are even worse

More Than a Third of the Global Population Could Experience Severe Heatwaves at Least Every 5 Years

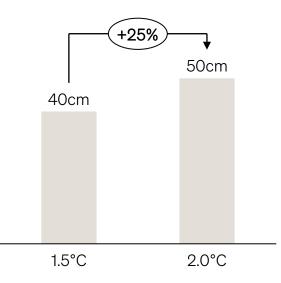
% of the global population experiencing severe heatwaves

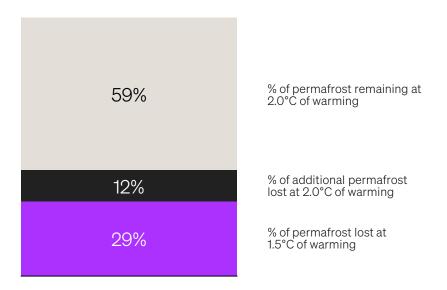



Widespread Food Shortages Could Arise in Southern Africa, The Mediterranean, Central Europe and The Amazon

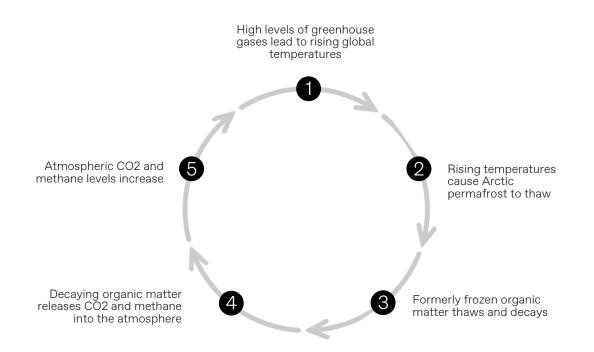
% decrease in crop yields in tropical regions

Wheat Production


Corn Production

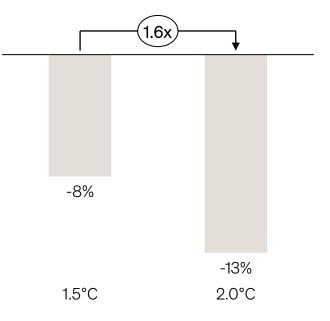

Over 70% of Earth's Coastlines Could See Sea-Levels Rise By 50cm, Resulting in Extensive Coastal Flooding

Rise in sea level by 2100 relative to 2000



More Than 40% of the Permafrost in the Arctic Could Disappear

The Arctic Ocean would go from seeing ice-free conditions in the summer once every 100 years to once every 10 years



Thawing of the Arctic Permafrost Could Result in Feedback Loops That Accelerate Global Warming

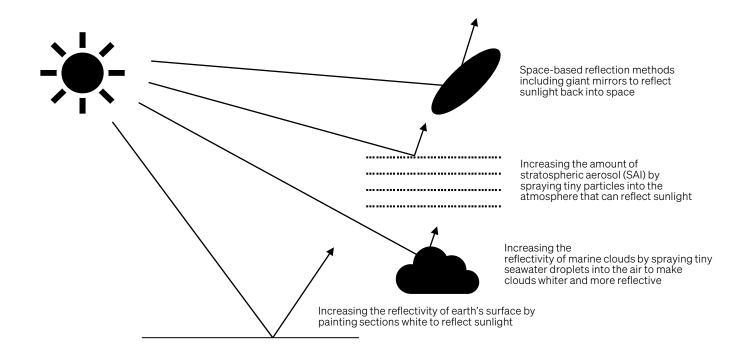
All of This Could Lead to Harmful Economic Consequences

Global Per Capita GDP in 2100

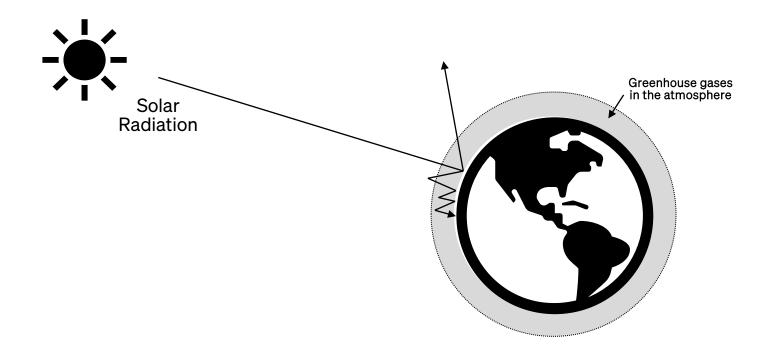
Dive Deeper...

Further Reading & Watching

Reading:


- <u>The Effects of Climate Change</u> NASA
- The Impacts of Climate Change at 1.5C, 2C and Beyond CarbonBrief
- How Thawing Permafrost Is Beginning to Transform the Arctic Yale Environment 360

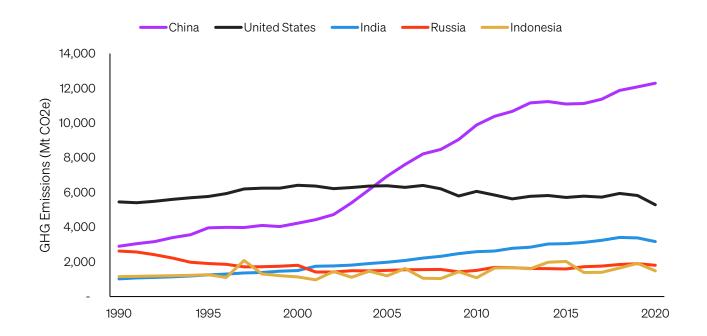
Watching:


- Why a Half Degree Rise in Global Temperature Would Be Catastrophic Seeker
- <u>Climate Change: How Half a Degree Could Change the World Forever</u> BBC Ideas

There are two methods to prevent further warming

Reflecting More Sunlight Back into Space

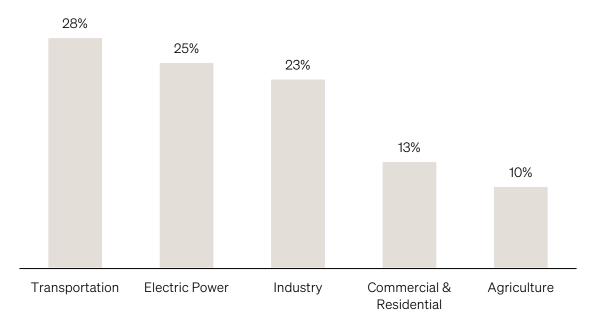
Or Restricting the Concentration of Greenhouse Gases in the Atmosphere


Reflecting sunlight back into space poses harmful potential implications for global weather, so the world is focused on reducing greenhouse gas emissions CHAPTER 02

Sources of U.S. emissions

The world emitted 55 billion tons of greenhouse gases in 2022

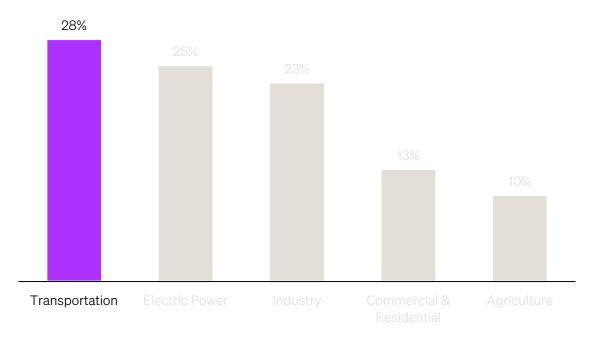
The United States is the Second Largest Global Emitter of Greenhouse Gases


Top 5 Emitters of GHG Emissions (Mt CO2e)

Where do these emissions come from?

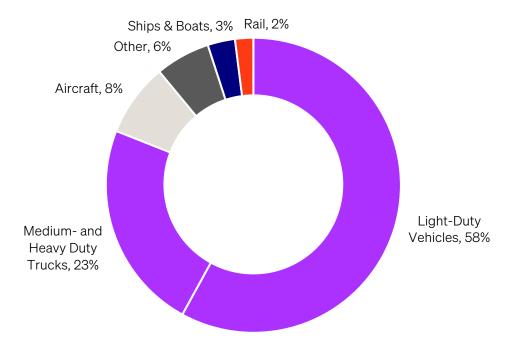
Greenhouse Gas Emissions Are Present Across Every Major U.S. Sector

Total U.S. Greenhouse Gas Emissions by Economic Sector, 2021



CHAPTER 03

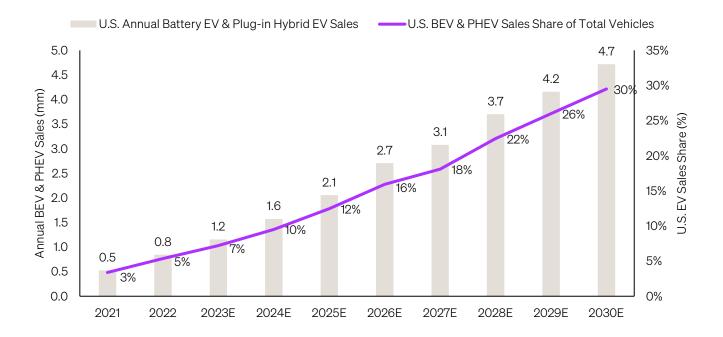
Decarbonizing transportation


Transportation is Responsible for 28% of U.S. Emissions

U.S. GHG Emissions by Source

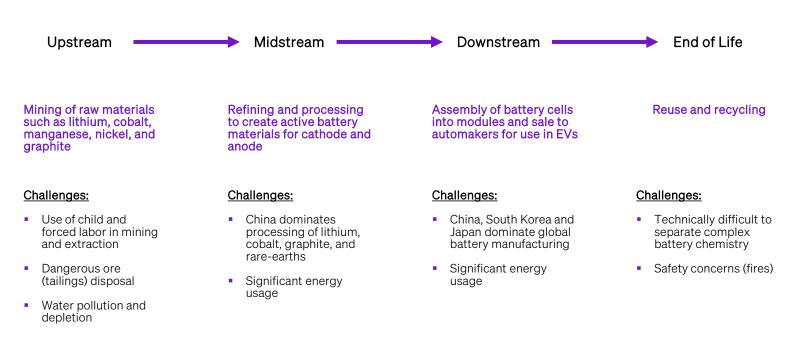
Vehicle Emissions Dominate U.S. Transportation Sector Emissions

U.S. Transportation Sector GHG Emissions by Source, 2021


How do we decarbonize vehicles?

Battery and Plug-In Hybrid Electric Vehicle Engines Emit Fewer Emissions Than Internal Combustion Engines

Highest emissions Lowest emissions				
Internal Combustion Engine (ICE)	Plug-In Hybrid Electric Vehicle (PHEV)	Battery Electric Vehicle (BEV)		
 Gasoline – the most common engine found in passenger vehicles Diesel – higher torque and fuel efficiency. Found in trucks and some passenger vehicles 	 Combining an internal combustion engine (ICE) with an electric motor and battery Can operate as electric-only, gasoline-only, or both to improve fuel efficiency and reduce emissions 	 All electric vehicle running entirely on electricity Powered by a large battery pack (typically lithium-ion) No internal combustion engine so no tailpipe emissions 		
۲Ţ		ال		


EVs Can Replace Internal Combustion Engines For Transportation

U.S. EV Sales & Sales Share Forecast (2021-2030E)

But EV Batteries Have a Complex Supply Chain

EV Battery Supply Chain

How do we decarbonize aviation?

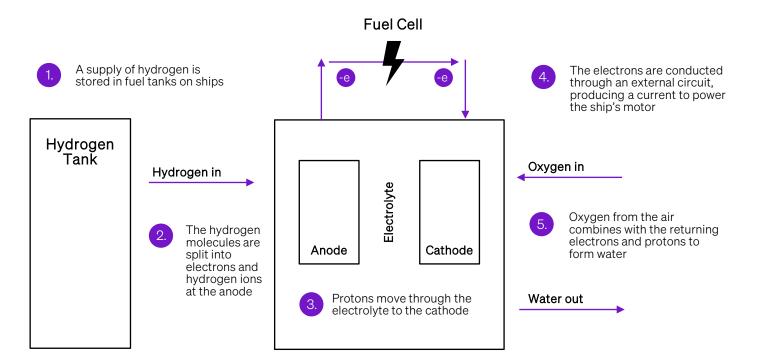
Decarbonizing Aviation Using Lithium Batteries Faces Several Structural Challenges

Energy Density	Range	Charging Infrastructure	Safety
 For the same amount of energy, lithium batteries are heavier and bulkier than diesel and kerosene Carrying enough batteries is often impractical due to space and weight constraints 	 Planes need to travel thousands of miles in a single journey It is often not feasible to carry enough batteries to cover these distances without requiring frequent recharging 	 Charging planes would lead to significant downtime and lost revenue It would be costly and logistically challenging to build charging infrastructure at airports 	 Hosting large quantities of lithium batteries can lead to fires and explosions "Thermal runaway" occurs when a hot battery breaks down, which accelerates the underlying reaction leading to uncontrollable heating
Δ <u>Λ</u>	F 71		N

Alternative Sources of Energy Can Be Processed to Produce Sustainable Aviation Fuel That Can Substitute For Fossil Fuels

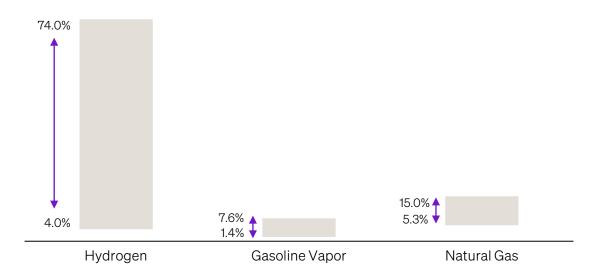
Sustainable Aviation Fuel Can Significantly Reduce Aircraft Emissions

Feedstock Collection	 Feedstocks like biomass, used cooking oils and municipal waste are collected and prepared for processing 	Compared with conventional jet fuel, 100% sustainable aviation has the potential to reduce greenhouse gas emissions by up to 94%
Processing	 Biomass is converted to synthetic gas, which is a mixture of hydrogen and carbon monoxide Used cooking oils and fats are hyper-processed to produce hydrocarbons 	-94%
Fuel Synthesis	 Synthetic gas is further processed to create long chain hydrocarbons Hydrocarbons from hyper-processing are further refined to meet aviation standards 	
Blending and Upgrading	 The output of this is sustainable aviation fuel, which is blended with conventional jet fuel and further refined to meet aircraft specifications 	Conventional Jet Fuel SAF


How do we decarbonize shipping?

Decarbonizing Shipping Using Lithium Batteries Faces Several Structural Challenges

Energy Density	Range	Charging Infrastructure	Safety
 For the same amount of energy, lithium batteries are heavier and bulkier than diesel and kerosene Carrying enough batteries is often impractical due to space and weight constraints 	 Ships need to travel thousands of miles on a single journey It is often not feasible to carry enough batteries to cover these distances without requiring frequent recharging 	 Charging ships would lead to significant downtime and lost revenue It would be costly and logistically challenging to build charging infrastructure at key ports 	 Hosting large quantities of lithium batteries can lead to fires and explosions "Thermal runaway" occurs when a hot battery breaks down, which accelerates the underlying reaction leading to uncontrollable heating
Δ <u>Γ</u>	(~~)		k


Hydrogen Fuel Cells Can Replace Fossil Fuels to Decarbonize Shipping

Hydrogen and oxygen react to produce electricity, water, heat, and no other emissions

But Hydrogen Has a Wide Range of Flammable Concentrations in Air and Requires Less Energy to Ignite Than Gasoline or Natural Gas, Making it Dangerous if Handled Improperly

% Concentration Range Within Which Substance Can Ignite

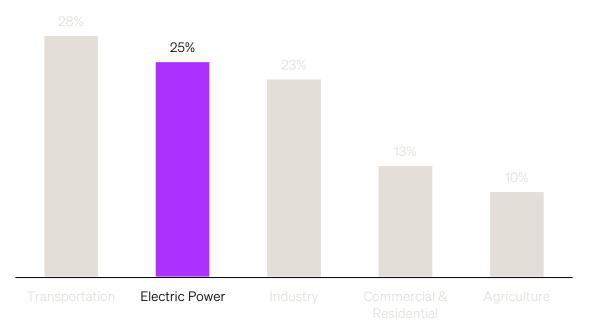
Dive Deeper...

Further Reading & Watching

Reading:

- <u>EV Sales Forecasts</u> EV Adoption
- <u>The EV Battery Supply Chain Explained</u> Rocky Mountain Institute
- <u>The Spiraling Environmental Cost of Our Lithium Battery Addiction</u> WIRED
- <u>Hydrogen Safety</u> Department of Energy

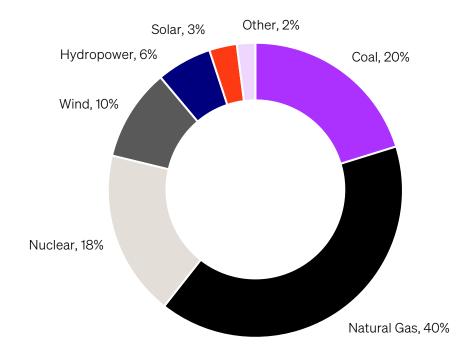
Watching:


- <u>Electric Vehicles' Battery Problem</u> Wendover Productions
- What Is Green Hydrogen And Will It Power The Future? CNBC
- How Do Hydrogen Fuel Cells Work? Reactions
- How Jet Fuel Is Made From Trash WSJ

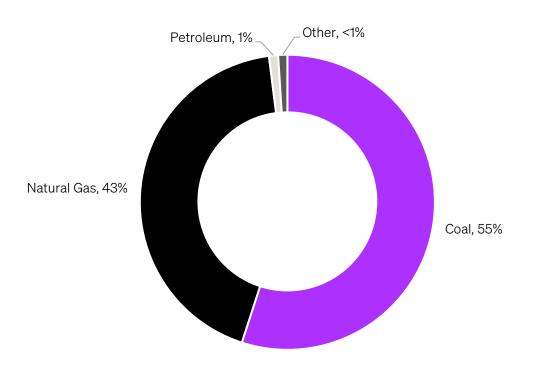
SOCIAL CAPITAL

Decarbonizing power generation

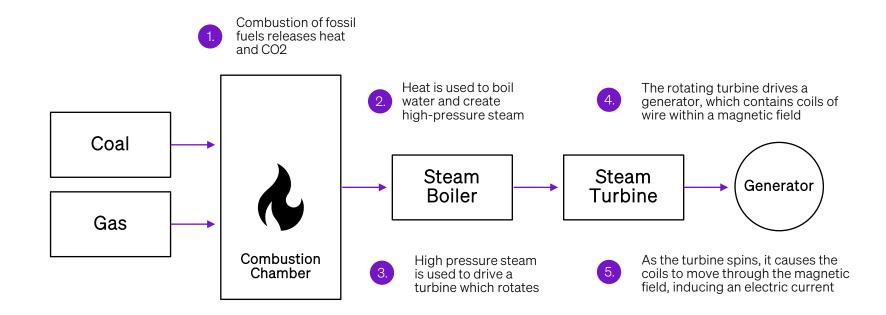
CHAPTER 04


Electric Power Generation is Responsible For 25% of U.S. Emissions

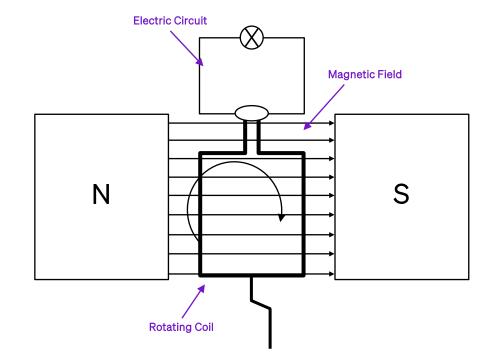
SOCIAL CAPITAL_


The U.S. Generates ~60% of its Electric Power From Coal and Natural Gas

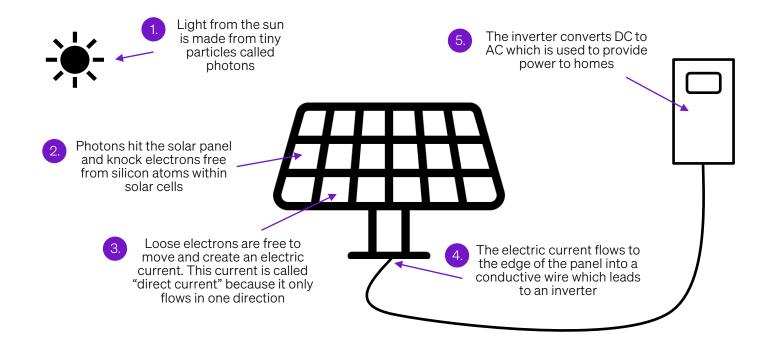
U.S. Utility-Scale Electricity Generation by Source


Which Are Responsible For ~98% of U.S. Power Sector Emissions

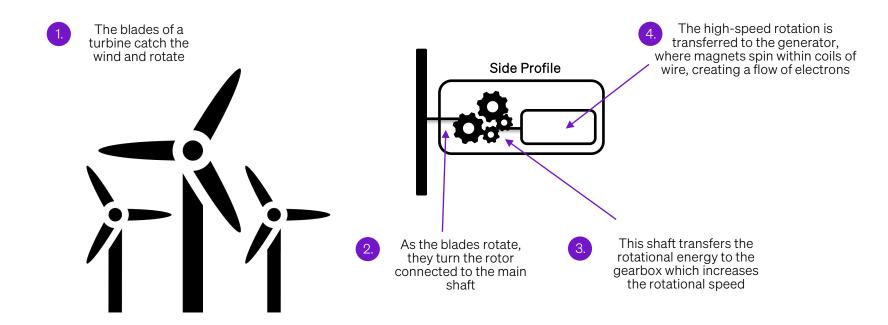
U.S. Power Sector GHG Emissions by Source, 2022


How does burning coal and natural gas generate power?

Coal and Natural Gas Are Burned to Boil Steam, Which Drives a Generator


Generators Induce an Electric Current by Rotating a Wire Through a Magnetic Field

- A coil of wire rotates within a magnetic field. This rotation is powered by a turbine which is driven by steam
- 2. An electric current is "induced" in the coil as it cuts the magnetic field. An electric current is the flow of electrons (charged particles) in a specific direction
- 3.
- As the coil rotates, the direction in which it cuts the magnetic field lines changes, meaning that the direction of the induced current changes periodically. This is "alternating current"



Coal and natural gas can be replaced with renewable sources of power generation

Solar Panels Can Convert Energy From the Sun into Electricity

Wind Turbines Can Drive a Generator Using Energy From the Wind

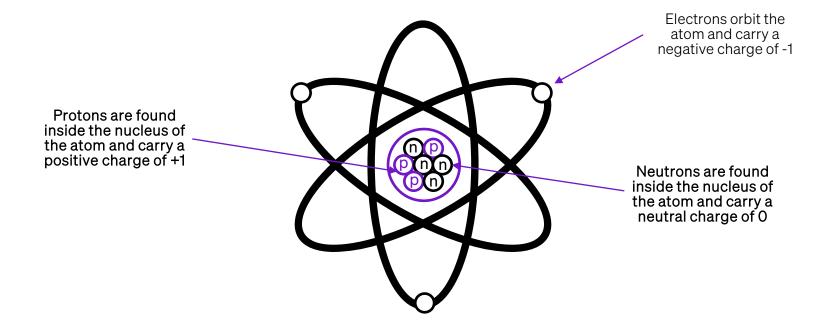
Dive Deeper...

Further Reading & Watching

Reading:

- How Electricity is Generated EIA
- <u>Where Does Our Electricity Come From?</u> World Nuclear Association
- <u>Electric Power Sector Basics</u> EPA

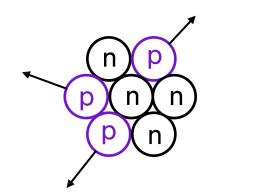
Watching:

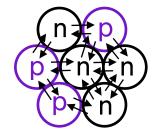

- How Do Coal Fired Power Stations Work? LiacosEM
- How Do Solar Panels Work? Ted Ed
- How Do Wind Turbines Work? Lesics

Nuclear power is another emissionsfree source of power generation

How does nuclear power work?

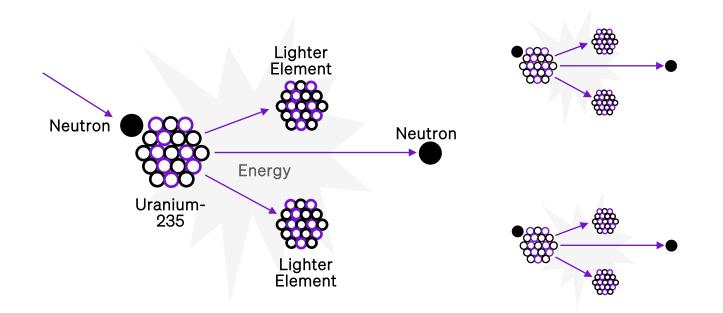
The Nucleus of an Atom Contains Protons and Neutrons

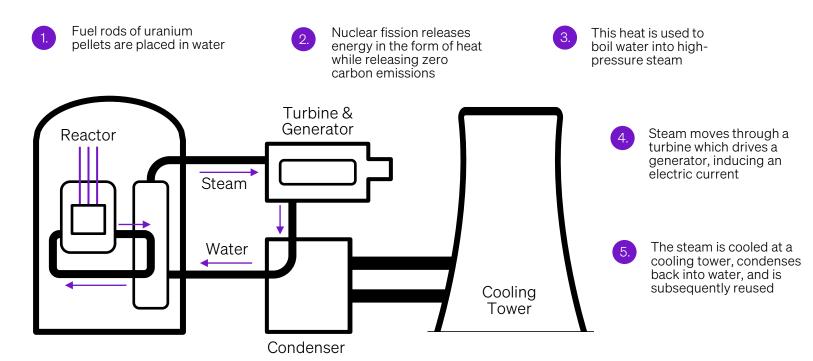

Model of an Atom



The Strong Nuclear Force Binds the Nucleus Together and Stores Energy

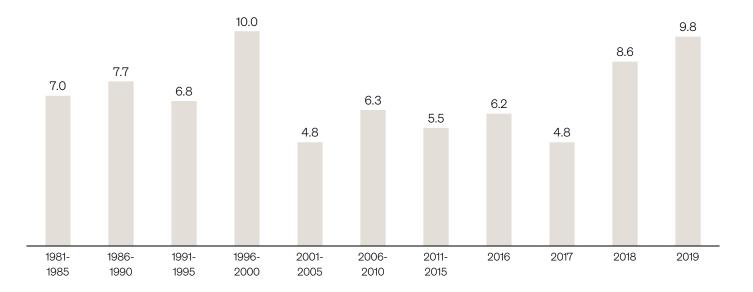
Protons with a like charge of +1 repel each other


But the strong nuclear force holds the nucleus together

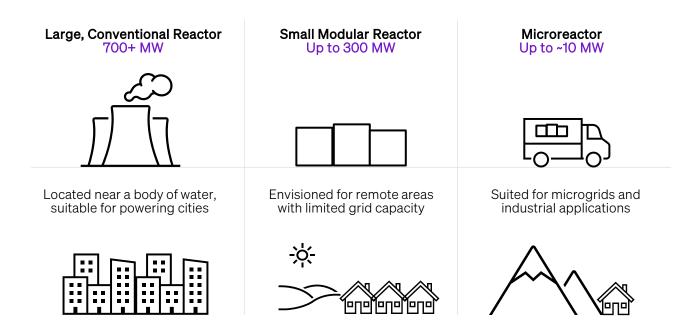


Nuclear Fission Involves Firing a Neutron into an Unstable Nucleus, Which Splits Into Two to Release Energy

Fission also releases multiple neutrons which can continue the reaction as a chain



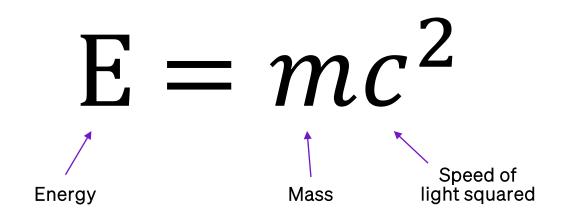
Energy Released During Fission is an Emissions-Free Source of Heat, Which Can Be Used to Boil Steam and Drive a Generator



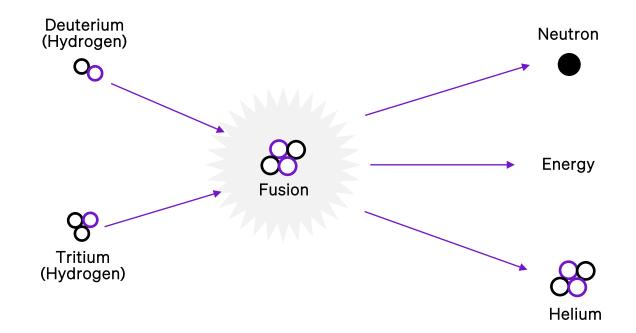
But Traditional Nuclear Power Plants Can Take Many Years to Construct

Median Construction Time For Reactors (Years)

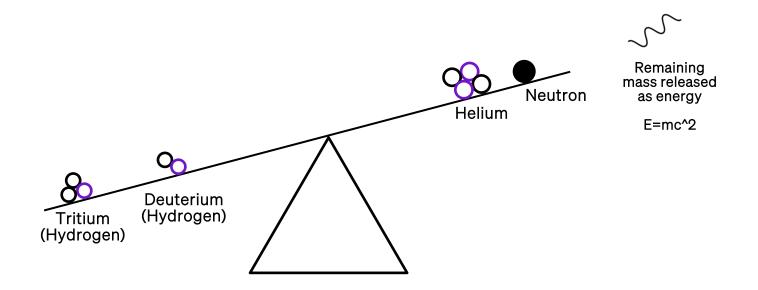
Small Modular Reactors and Microreactors Can Be Factory Assembled and Scaled to Locations Not Suitable for Traditional Nuclear Power Plants

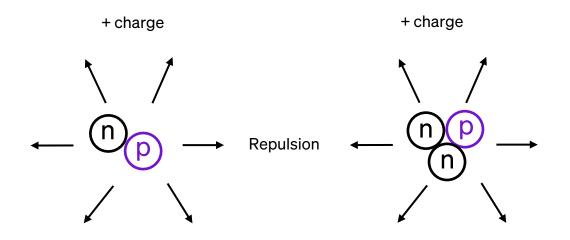


Nuclear fusion is an evolving technology which replicates how stars produce energy, and could produce limitless clean energy if successful

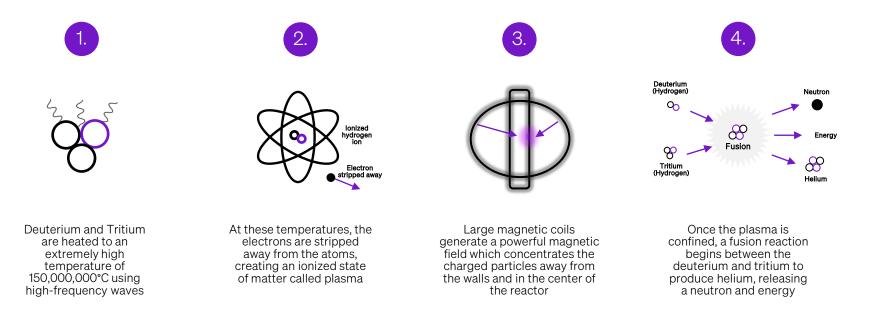

How does nuclear fusion work?

Under Appropriate Conditions, the Energy of an Atom is Interchangable With its Mass

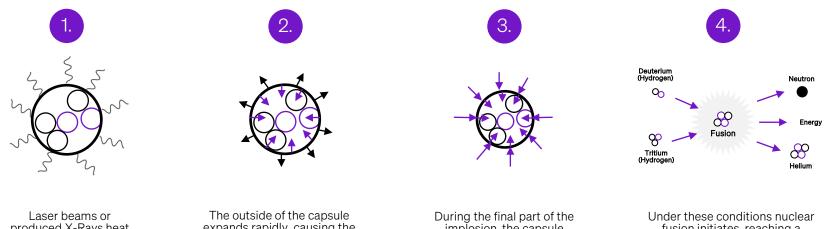

Einstein Mass-Energy Equivalence


Nuclear Fusion Involves Merging Two or More Nuclei Together to Release Energy

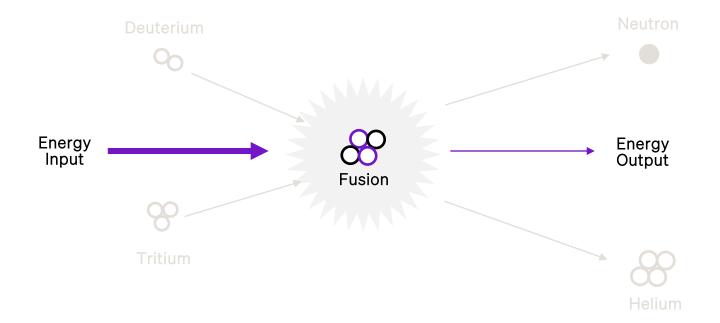
Since the Total Mass of the Fused Nucleus is Lower Than the Mass of the Two Original Nuclei, the Remaining Mass is Released as Emission-Free Energy



Normally, Fusion is Not Possible Due to the Repulsive Forces Between Two Nuclei Which Have Similar Charges



Magnetic Confinement Fusion Methods Heat Hydrogen to Become Plasma, and Use Magnetic Fields to Concentrate the Plasma to Initiate a Fusion Reaction


Tokamaks, Stellarators and Reversed Field Pinch Devices are Examples of Magnetic Confinement Fusion

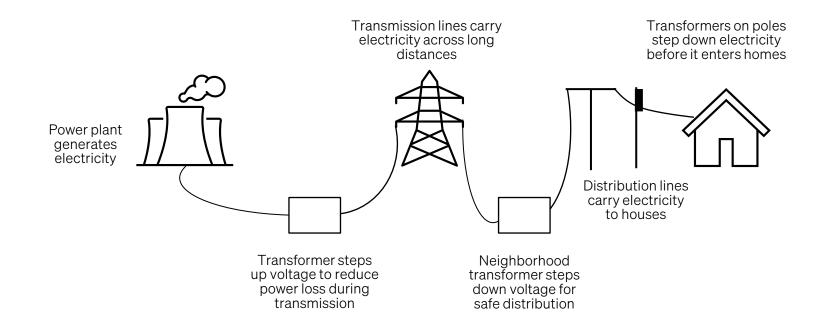
Inertial Confinement is a Developing Method of Fusion Which Focuses Laser Beams Onto a Pellet of Deuterium-Tritium Fuel, Which Implodes and Compresses to Initiate Fusion

produced X-Rays heat the pellet, forming a surrounding plasma envelope The outside of the capsule expands rapidly, causing the rest of the capsule to implode inwards per Newton's law that every action has an equal and opposite reaction During the final part of the implosion, the capsule reaches ~1,000x its original density and ~30,000,000°C Under these conditions nuclear fusion initiates, reaching a temperature of over a billion Celsius and releasing energy Currently, Fusion Technologies Require More Energy as Input Than They Release, Resulting in Net Energy Loss

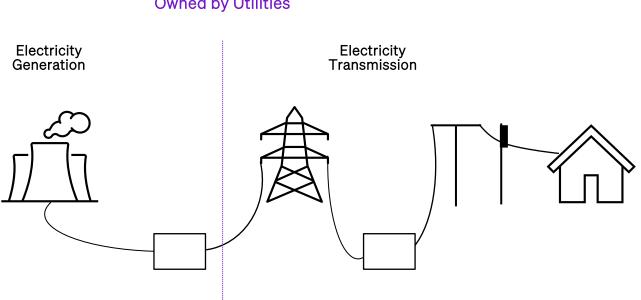
Dive Deeper...

Further Reading & Watching

Reading:


- <u>Nuclear Power 101</u> NRDC
- <u>What is Fusion?</u> ITER
- <u>Helion Energy</u> Helion Energy
- <u>Nuclear Fusion Power</u> World Nuclear Association

Watching:

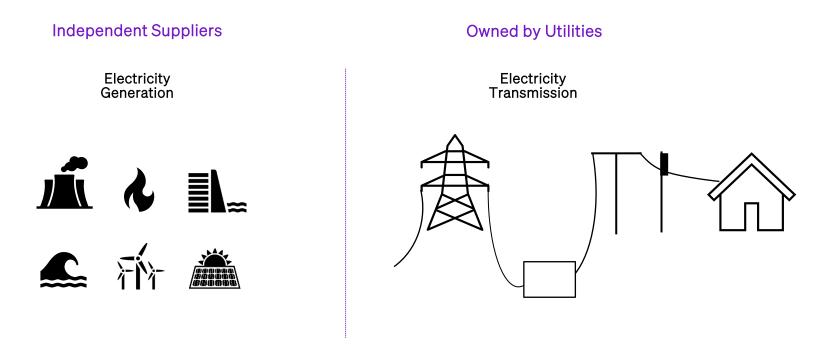

- Nuclear Physics: Crash Course Physics #45 CrashCourse
- How Do Nuclear Power Plants Work? TED-Ed
- Fusion Power Explained Future or Failure? Kurzgesagt
- <u>Nuclear Reactions, Radioactivity, Fission and Fusion</u> Professor Dave Explains

How does electricity reach your home?

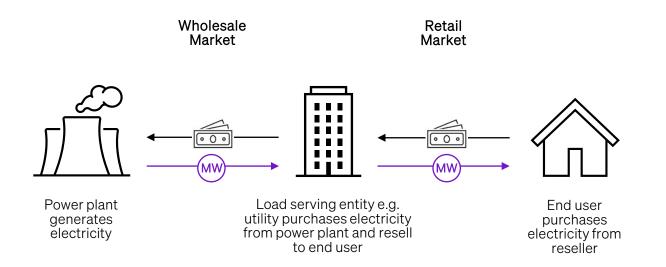
Electricity Reaches the Home Through a Network of Transmission and Distribution Lines



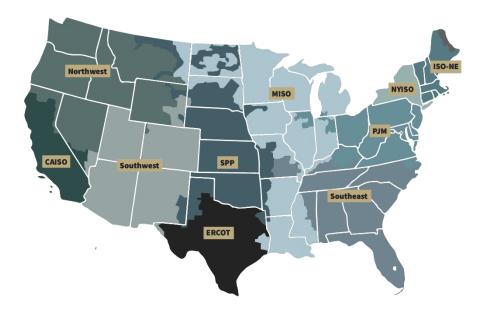
Traditionally, U.S. Electricity Demand Was Primarily Served by Vertically Integrated Utilities Who Owned Both Electricity Generation and Transmission

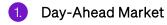


Owned by Utilities

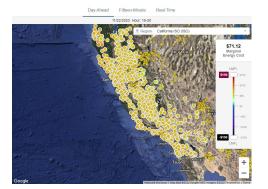

But Since the 1990s, Many States Deregulated and Restructured Their Electric Systems by Splitting Power Generation and Transmission to Create Independent Energy Suppliers

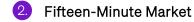
This Created Competition For Customers, Who Could Now Choose From a Range of Electric Suppliers Instead of Just Their Local Utility


In Deregulated Markets, Electric Utilities Purchase Electricity From Power Generators at Wholesale Market Prices, and Resell Electricity to Consumers at Retail Market Prices

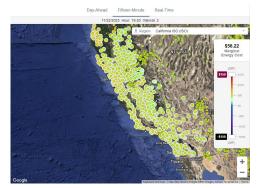

How do power markets work?

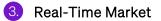
Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs) Operate Electricity Grids and Manage Wholesale Power Markets Across Regions


Map of RTOs and ISOs

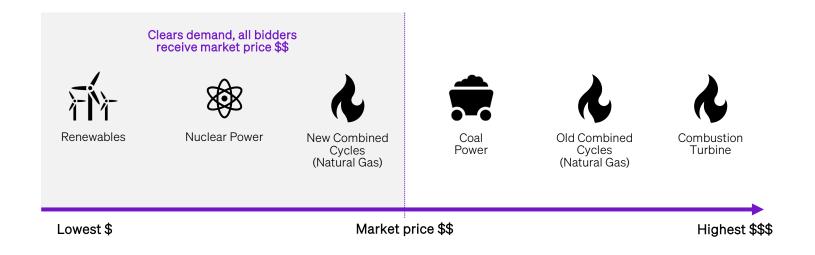


RTOs and ISOs Receive Bids From Utilities and Power Plants to Buy and Sell Electricity Over Different Time Periods




Represents ~95% of energy transactions based on forecasted load for next day

Market runs in 15-minute intervals to balance last-minute demand needs



Market runs in 5-minute intervals to finetune balance between supply and demand

They Match These Bids by Organizing the Dispatch of Power in Order of Lowest to Highest Cost of Generation Until Their Region's Demand is Met

All bidders receive the market price, which is set by the marginal bid needed to meet demand

After Purchasing Power From the Wholesale Market, Utilities Charge Consumers Through a Monthly Bill Based Upon the Kilowatt Hours (kWh) of Electricity Consumed

Example Electricity Bill

EVERSURCE

Account Number: 0000 000 0000 Customer name key: CUST Statement Date: 04/05/19 Service Provided To: JOHN J CUSTOMER

Electricity
priced on
monthly kWh
used 🔍

Service Ad	ANY	TOWN, MA				
Rate: A1 R1 RESIDENTIAL Bill Cycle: 03 Service from 03/07/19 - 04/03/19 27 Days Next read date on or about: May 06, 2019						
Meter Number	Current Read	Previous Read	Current Usage	Reading Type		
0000000	30596	30143	453	Actual		

Monthl	y kWh U	se				
Apr	May	Jun	Jul	Aug	Sep	Oct
463	427	459	439	559	1035	559
Nov	Dec	Jan	Feb	Mar	Apr	
525	562	522	677	520	453	

Total Amount Due \$117.17 by 04/30/19 Electric Account Summary Amount Due On 04/05/19 \$133.48 Last Payment Received On 04/04/19 -\$133.48 Balance Forward \$0.00 Current Charges/Credits Electric Supply Services \$61.55 \$55.62 **Delivery Services Total Current Charges** \$117.17 **Total Amount Due** \$117.17

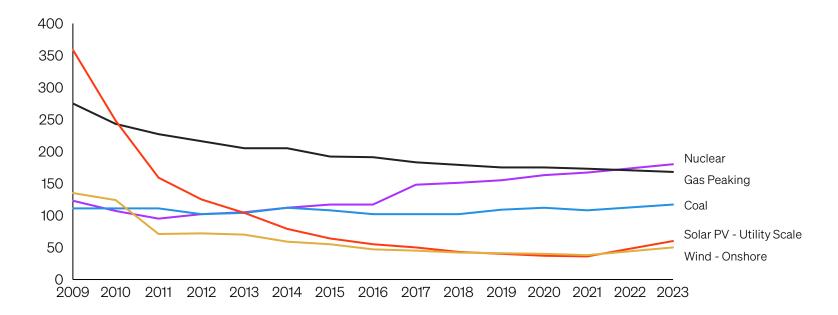
otal Charges for Electricity

Supplier (Eversource) (Basic Svc Fixed)	
Generation Service Charge	453 kWh X .13588	\$61.55
Subtotal Supplier Services		\$61.55
Delivery (Rate A1 R1 RESIDENTIAL)		
Customer Charge		\$7.00
Distribution Charge	453 kWh X .06396	\$28.97
Transition Charge	453 kWh X00052	-\$0.24
Transmission Charge	453 kWh X .02585	\$11.71
Revenue Decoupling Charge	453 kWh X00057	-\$0.26
Distributed Solar Charge	453 kWh X .00088	\$0.40
Renewable Energy Charge	453 kWh X .00050	\$0.23
Energy Efficiency	453 kWh X .01725	\$7.81
Subtotal Delivery Services		\$55.62
Total Cost of Electricity		\$117.17
Total Current Charges		\$117.17

SOCIAL CAPITAL_

Electric Power is Measured in Watts, Which Are Units of Energy (Joules) Used Per Second

Watts (W) Lightbulb	Kilowatts (kW) Appliance	Megawatts (MW) Town	Gigawatts (GW) City
 1 watt = 1 joule of energy per second A 10-watt bulb uses 10 joules of energy per second 	 1 kilowatt = 1,000 joules of energy per second A 1.5kW electric kettle uses 1,500 joules of energy per second 	 1 Megawatt = 1,000,000 joules of energy per second A 1MW wind turbine produces enough energy to power ~750 homes at any instant 	 1 Gigawatt = 1,000,000,000 joules of energy per second The Hoover Dam has a generation capacity of ~2GW, enough to power ~1.5 million homes at any instant
Q			

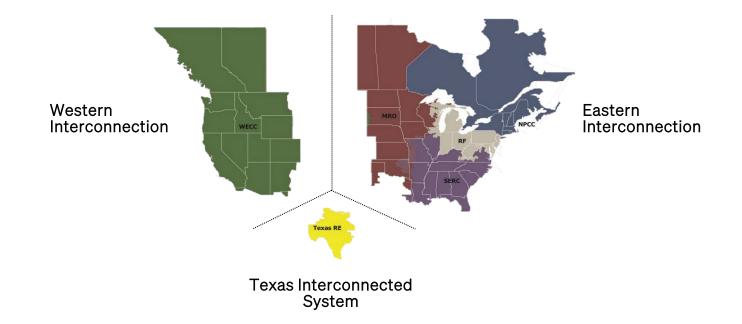

1 kWh Represents 1 kW of Power Used for 1 Hour

Electrical Energy Usage is Measured as Watts Used Over a Period of Time

Watt Hours (Wh) Lightbulb	Kilowatt Hours (kWh) Appliance	Megawatt Hours (MWh) Town	Gigawatt Hours (GWh) City
 1 watt hour = 1 watt device used for 1 hour A 10-watt bulb used for 2 hours = 20-watt hours 	 1 kilowatt hour = 1,000-watt device used for 1 hour A 1.5kW electric kettle used for 3 hours = 4.5kWh 	 1 Megawatt hour = 1,000,000-watt device used for an hour A 1MW wind turbine rotating for 6 hours = 6MWh of electricity production 	 1 Gigawatt hour = 1,000,000,000-watt device used for an hour A city that consumes 1GW at any instant = 24GWh of electricity consumed a day
Q			

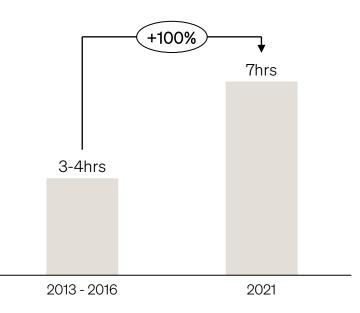
Solar and Wind Are Renewable Sources of Power Generation Which Offer the Lowest Levelized Cost of Energy Per MWh

Levelized Cost of Energy (\$ / MWh)

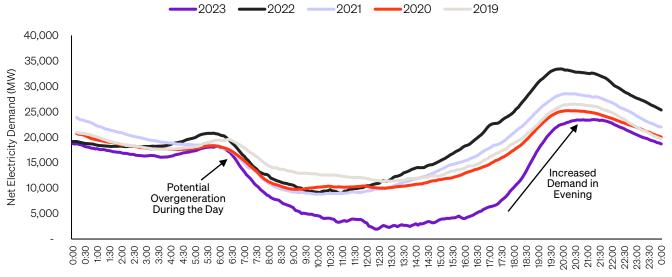


But adding renewable energy sources to the grid presents several key risks

The U.S. Grid is a Network of Power Plants, Transmission Lines, and Distribution Centers that Generate and Distribute Electricity



It is Divided into Three Major Regions Which Consist of Locally Interconnected Electricity Grids


Extreme Weather and Rising Demand Are Threatening the Resiliency of Existing Grid Infrastructure, Which Was Mostly Built During the 1960s and 1970s

The average duration of a U.S. power outage has doubled in the last decade

Adding Renewable Energy Sources Risks Oversupplying the Grid During the Day When Energy Demand is Lower, Resulting in Wasted Power Generation

California Net Electricity Demand (MW)

Time of Day

And Many Renewables Cannot be Dispatched to Respond to Changes in Electricity Demand in the Same Way That Fossil Fuels Can

Coal Power

Wave & Tidal Power

Solar Power

Wind Power

Nuclear Power

Natural Gas Power

Hydroelectric Power

Least dispatchable

Most dispatchable

How do we build a carbon-free grid that can continue to provide power reliably?

A Wide Range of Energy Sources Can Generate Electricity Without Interruption

Continuous sources like nuclear and natural gas are essential for reliable electricity generation

Nuclear Power Natural Gas With

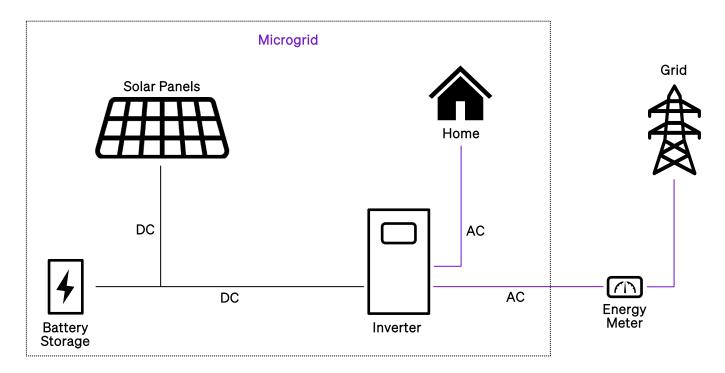
ł

Carbon Capture

Hydroelectric Power

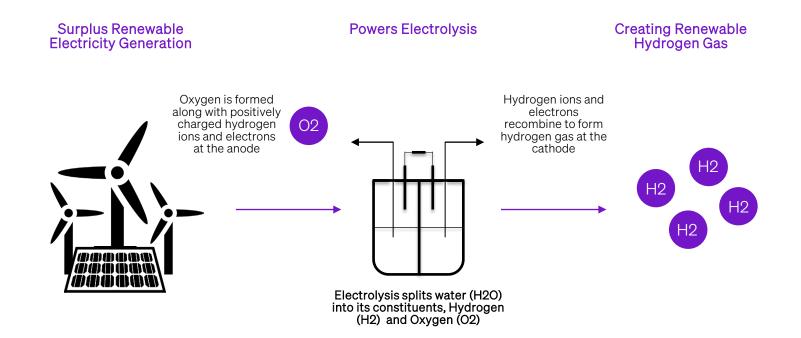
行

Wind Power


Solar Power

Most continuous

Most intermittent


Solar 'Microgrids' Can Decentralize Power Generation Away From the Grid

Residential solar and storage systems can operate independently during outages and during periods of low demand

SOCIAL CAPITAL_

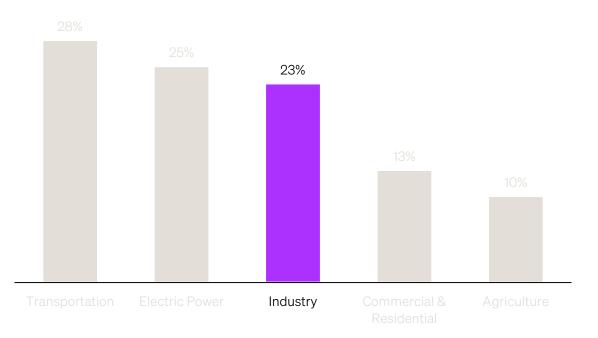
Hydrogen Can Be Used to Store Surplus Renewable Electricity Generation

Dive Deeper...

Further Reading & Watching

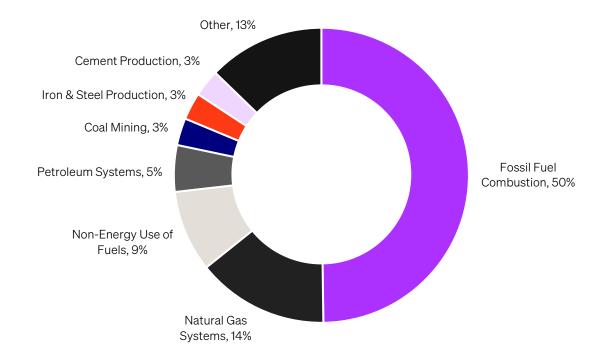
Reading:

- <u>kW and kWh Explained</u> Solar Schools
- Levelized Cost of Energy DOE
- U.S. Electricity Markets 101 Resources for the Future
- <u>Managing Oversupply</u> California ISO
- <u>Solar Integration: Distributed Energy Resources and Microgrids</u> DoE


Watching:

- <u>Creaky U.S. Power Grid Threatens Clean-Energy Progress</u> Reuters
- What is a Microgrid? Western Power
- How Electrolysis Works Penn State

CHAPTER 05

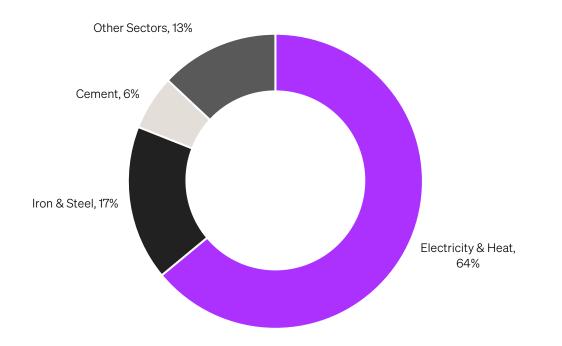

Decarbonizing industry

Industry is Responsible For 23% of U.S. Emissions

Industrial Sector Emissions Are Driven by Burning Fossil Fuels

U.S. Industrial Sector Direct GHG Emissions by Activity, 2021

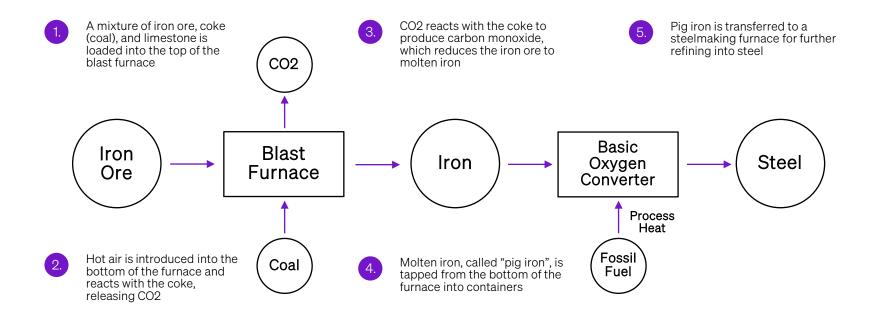
Fossil Fuels Like Coal Are Burned to Generate Heat Across Key Industries


% Global Share of Estimated Fuel Consumption For Energy, 2017

SOCIAL CAPITAL

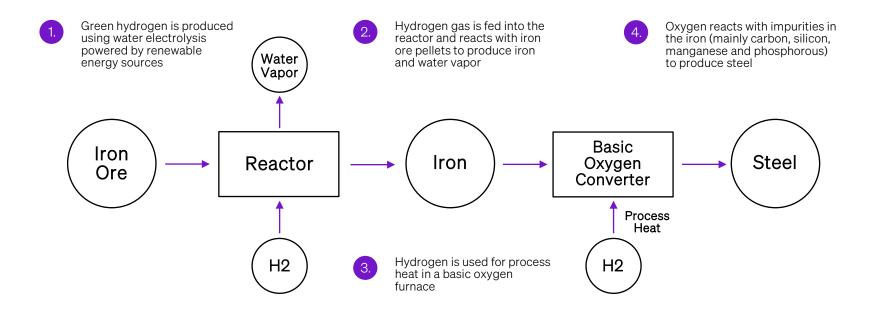
Steelmaking and Cement Production Account For ~23% of Coal Demand

% Worldwide Coal Demand by Sector, 2020



SOCIAL CAPITAL_

How do we decarbonize steelmaking?


Traditional Steelmaking Emits Large Volumes of Greenhouse Gases

Blast Furnace Production Process

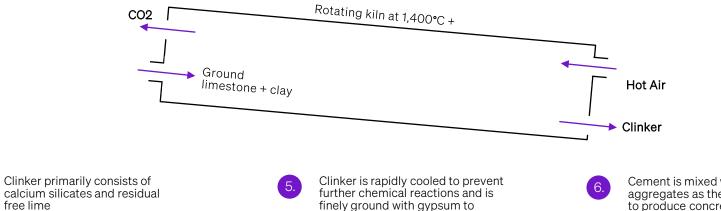
Hydrogen Can Replace Coal in Steelmaking

Hydrogen-Based Direct Reduction Process

How do we decarbonize cement production?

The Chemical Process of Cement Production is Highly Emissive

Cement is the key input in concrete, a vital global building material



Crushed limestone, clay, and other materials are fed into a huge cylindrical kiln and heated to 1,450°C using fossil fuels

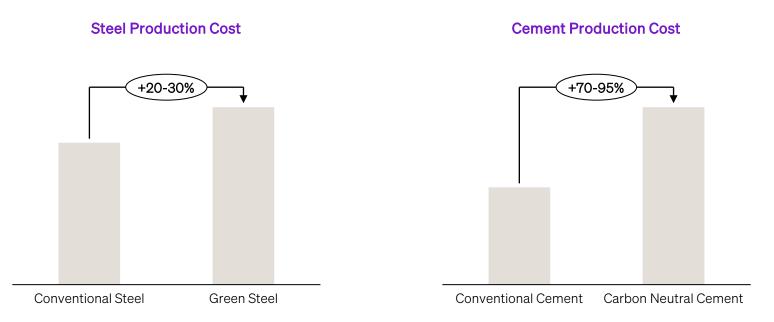
The process of "calcination" breaks limestone into calcium oxide and CO2

Other materials including clay, shale and iron ore are added to the calcinated limestone and produce "clinker", emerging as marble-sized grey balls

produce cement

Cement is mixed with water and aggregates as the binding agent to produce concrete, a key building material

SOCIAL CAPITAL


free lime

Capturing and Using Carbon Can Produce Carbon Neutral Concrete

Carbon capture can be deployed across a wide range of industries

Use Sustainable Fuel	Capture Flue Gases	Inject CO2 into Concrete Mix	Mineralize CO2 to Produce Aggregate
 Replace coal and natural gas with renewable-powered electric kilns or clean hydrogen 	 Capture CO2 emitted from cement plants Pre-treat captured gases to remove impurities and water vapor 	 Inject CO2 into fresh concrete during mixing CO2 will react with water in the concrete mix to form calcium carbonate 	 CO2 is mixed with selected feedstock materials (such as steel slag and fly ash) in a reactor to produce stable carbonate compounds
	 Compress and transport the CO2 	 This improves the compressive strength of concrete and reduces the amount of cement required 	 The resulting carbonates are processed to form aggregates suitable for use in concrete

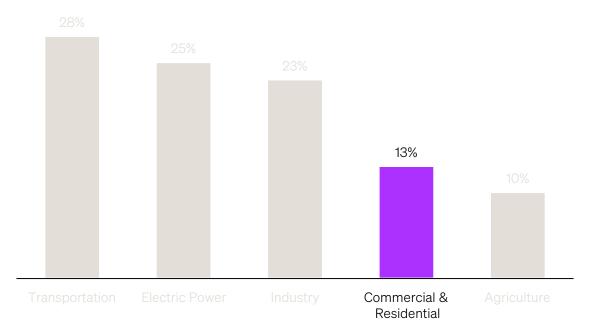
But Carbon Neutral Methods of Producing Steel and Cement Are More Expensive Than Legacy Methods

Dive Deeper...

Further Reading & Watching

Reading:

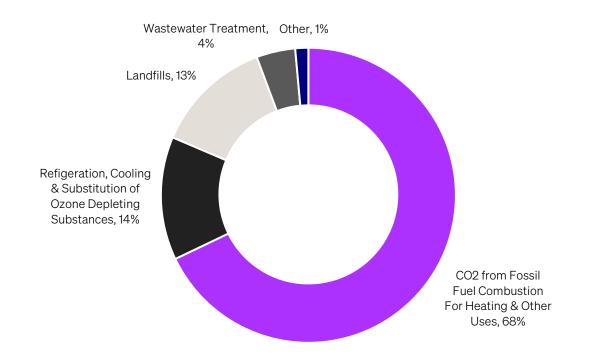
- <u>The Potential of Hydrogen For Decarbonising Steel Production</u> European Parliament
- Portland Cement Manufacturing EPA
- <u>Permanent Carbon Capture</u> Blue Planet Systems


Watching:

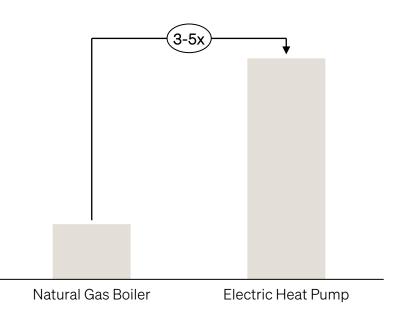
- <u>Steel Manufacturing</u> Matallurgy Data
- How Cement is Made Portland Cement Association
- <u>CarbonCure's Concrete Technology</u> CarbonCure

CHAPTER 06

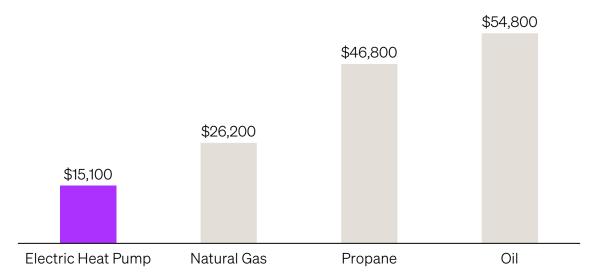
Decarbonizing commercial & residential emissions


Commercial and Residential Sectors Are Responsible For 13% of Total U.S. Emissions

SOCIAL CAPITAL_

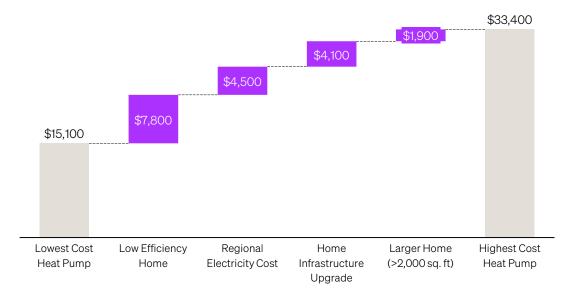

Heating and Cooling Drive Commercial & Residential Sector Emissions

U.S. Commercial & Residential Sector Direct GHG Emissions by Activity, 2021


Electric Heat Pumps Are More Efficient Than Gas Furnaces, and Can Replace Fossil Fuels For Both Heating and Cooling

Energy Efficiency

The Lifetime Cost of Electric Heat Pumps is Significantly Lower Than Burning Fossil Fuels


Total Cost of Ownership Excluding State Incentives

SOCIAL CAPITAL_

But Regional Factors and Infrastructure Upgrade Requirements Can Make the Installation and Lifetime Cost of Heat Pumps Much Higher

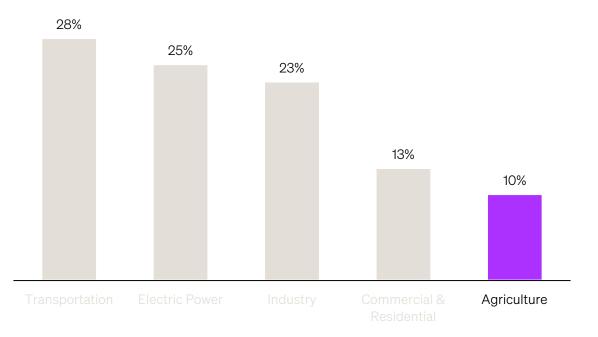
Total Cost of Ownership Waterfall (Lowest to Highest)

Dive Deeper...

Further Reading & Watching

Reading:

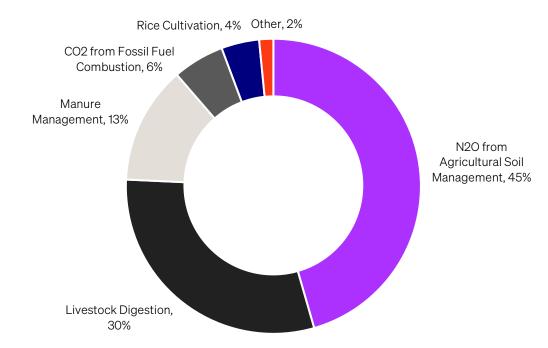
- Why Are We Still Using Super-Greenhouse Gases in our Home Air Conditioners? TechCrunch
- <u>How Do Heat Pumps Work?</u> National Grid
- Everything You Need to Know About the Wild World of Heat Pumps MIT Technology Review
- <u>The Rise of Electric Heat Pumps</u> Harvard


Watching:

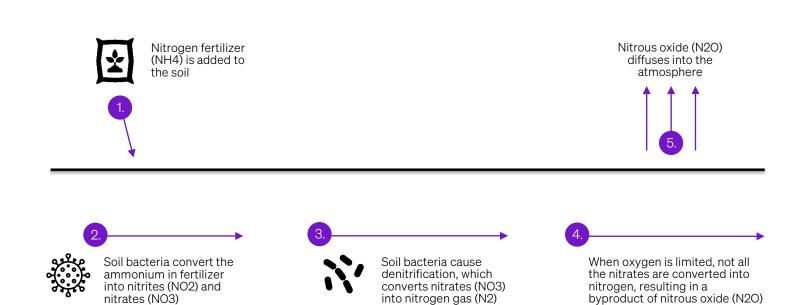
- Heat Pumps Explained The Engineering Mindset
- <u>The Cruel Irony of Air Conditioning</u> MinuteEarth

CHAPTER 07

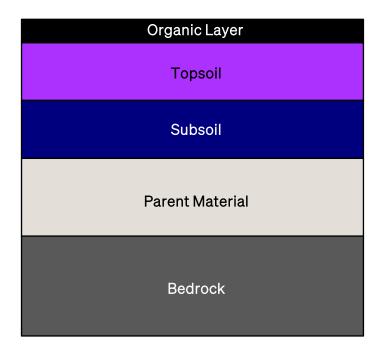
Decarbonizing agriculture


Agriculture is Responsible For 10% of U.S. Emissions

SOCIAL CAPITAL_


Soil Management and Livestock Drive Agriculture Emissions

U.S. Agriculture Sector Direct GHG Emissions by Activity, 2021


How do we decarbonize soil management?

Applying Fertilizer to Grow Crops Results in Nitrous Oxide Emissions

And Tilling Soil Accelerates Decomposition of Organic Matter Which Releases CO2

Soil stores carbon in various organic and inorganic forms, including living plant roots and decomposed organic matter

2.

Physical and chemical weathering of parent rock material breaks rocks down into smaller particles including sand, silt and clay

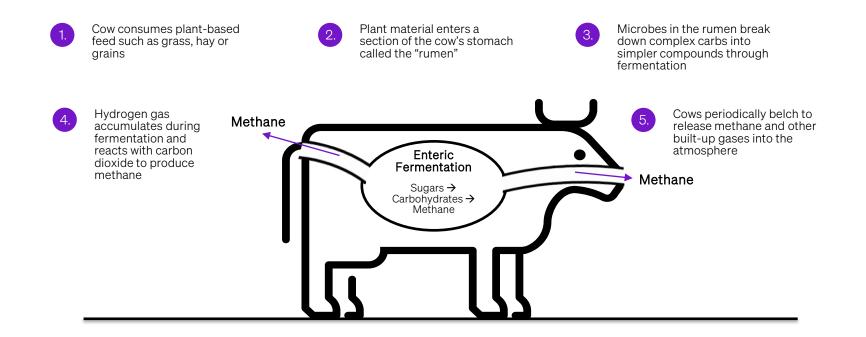
Plants and animals decompose and contribute organic matter to the surface, which becomes part of the developing soil

Microorganisms including bacteria and fungi help to decompose dead plant and animal material to bring organic matter into the soil

Over time, organic matter decomposes into stable compounds called "humus", a dark, carbon-rich soil which forms the top organic layer

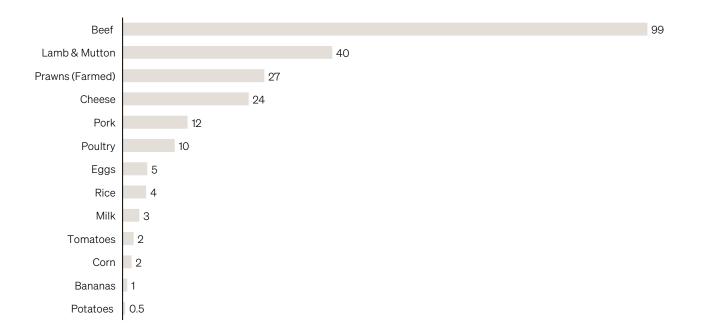
When soil is tilled, it exposes previously buried organic matter, leaving it open to microbial decomposition which releases CO2

Reduced Tillage and Cover Crops Can Reduce GHG Emissions From Soil Management


Reduced tillage and cover crops can help to maintain the integrity of soil and carbon stored within

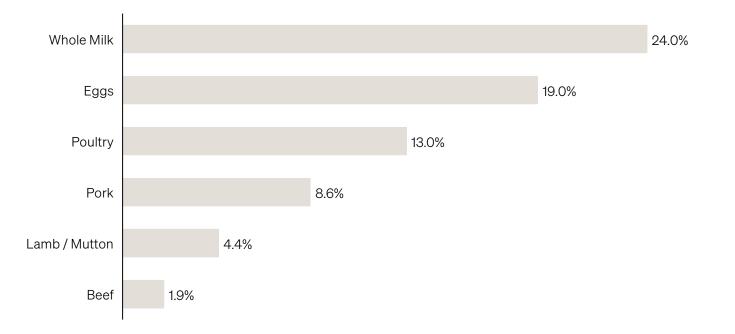
Reduced Tillage	Cover Crops
 Reduced tillage minimizes organic matter	 Cover crops like legumes naturally add nitrogen to
breakdown, reducing N2O emissions and storing	soil and improve nutrient cycling, reducing the
more carbon in the soil	need for synthetic fertilizers
 Reduced tillage also leaves crop residues on the	 Cover crops sequester carbon from the
surface of soil, which can maintain and increase	atmosphere and eventually become a source of
levels of soil organic carbon	stable organic carbon in the soil
	 Cover crops protect soil from erosion, which helps to maintain soil structure

How do we decarbonize livestock?


Livestock Emit Methane Through Excretion of Gases Produced During Digestion

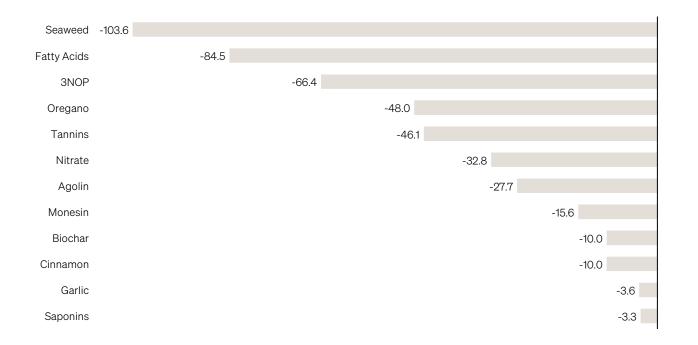
Cow Digestive System

Beef Production Emits More Greenhouse Gases Than Any Other Food Product

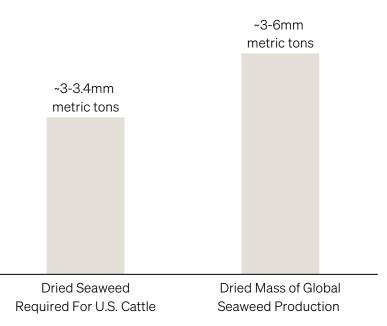

Greenhouse Gas Emissions per Kilogram of Food Product (CO2e)

SOCIAL CAPITAL_

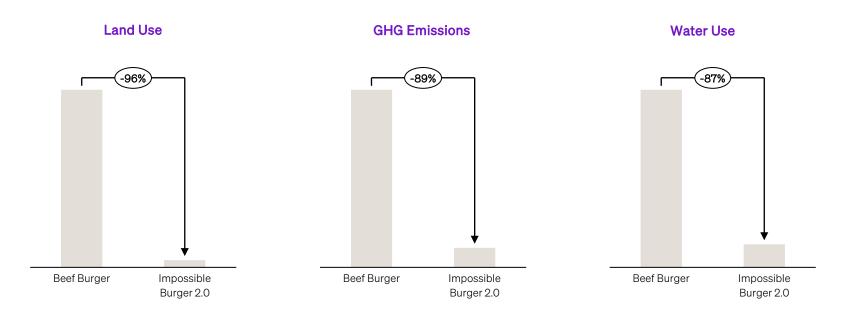
And Beef Production is Less Calorie Efficient Than Other Proteins


Percentage of Caloric Inputs as Feed Effectively Converted to Animal Product

SOCIAL CAPITAL


Cattle Feed Additives Can Reduce Methane Emissions From Cows

Mean Methane Reductions From Feed Additives (grams/day)


But Harvesting Enough Seaweed For the World's ~1.4Bn Cows is Difficult to Scale

Seaweed additives for U.S. cows alone would consume over half of global seaweed production

Plant-Based Meat Offers a More Environmentally Friendly Alternative to Beef

Impossible Burger 2.0 vs Conventional Meat

But Existing Plant-Based Meat Options Use Large Ingredient Lists Which May Carry Potential Health Risks

	Ground Beef (20% fat)	Beyond Burger	Impossible Burger
Calories	270	290	240
Saturated Fat	6.7g	5.0g	8.0g
Protein	6.7g	5.0g	8.0g
Sodium	75mg	450mg	370mg
Ingredients	Beef	Water, pea protein (16%), canola oil, coconut oil, rice protein, flavoring, stabilizer (methylcellulose), potato starch, apple extract, color (beetroot red), maltodextrin, pomegranate extract, salt, potassium salt, concentrated lemon juice, maize vinegar, carrot powder, emulsifier (sunflower lecithin)	Water, plant protein (21%) (soy), sunflower oil, coconut oil, thickener (INS 461), glutamic acid, natural flavors, cultured dextrose, modified starch, yeast extract, soy leghemoglobin (genetically modified), salt, antioxidant (INS 307b), vitamins and minerals (zinc gluconate, niacin (Vitamin B3), thiamine hydrochloride (Vitamin B1), pyridoxine hydrochloride (Vitamin B6), riboflavin (Vitamin B2), Vitamin B12).

Dive Deeper...

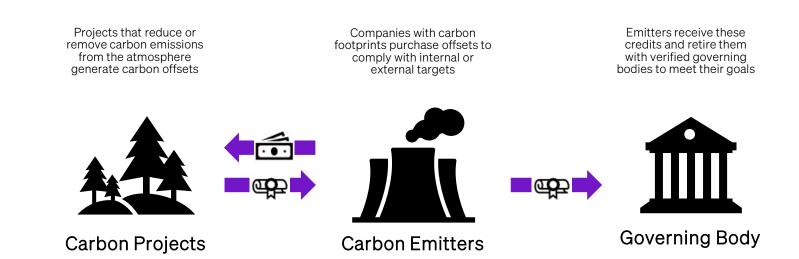
Further Reading & Watching

Reading:

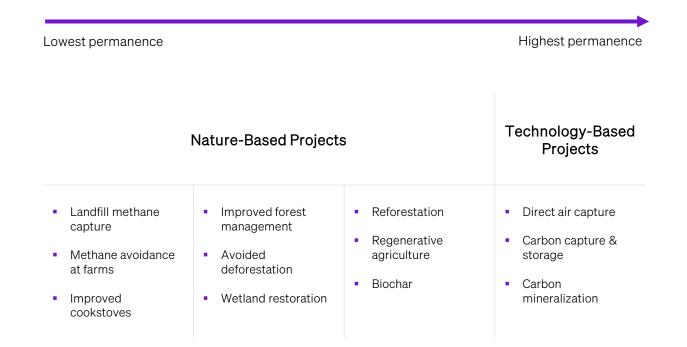
- <u>How Soils Form</u> Queensland Government
- <u>No-Till Farming Improves Soil Health and Mitigates Climate Change</u> Environmental and Energy Study Institute
- Plant-Based Meat for a Growing World Good Food Institute
- Impossible and Beyond: How Healthy Are These Meatless Burgers? Harvard Health

Watching:

- <u>Carbon Farming: A Climate Solution Under Our Feet</u> NHK World Japan
- <u>Cow Burps Are a Climate Problem. Can Seaweed Help?</u> Vox


CHAPTER 08

Offsetting other emissions


Many Companies Have Prioritized Offsetting Their Direct and Indirect Emissions to Reach Net Zero

Scope 1 Direct Emissions	Scope 2 Indirect Emissions	Scope 3 Indirect Emissions
Direct emissions from sources that a company owns and controls	Indirect emissions from how the energy a company uses is produced	Indirect emissions from the rest of a company's value chain
E.g. Direct CO2 emissions from a company's vehicle fleet	E.g. Indirect emissions from using fossil-fuel produced electricity	E.g. Indirect emissions generated by suppliers of input products

Carbon Projects Generate Credits For Companies to Purchase and Offset Their Emissions

Technology-Based Carbon Projects Are Considered More Permanent Than Nature-Based Solutions

But Technology-Based Projects Are Much More Expensive Than Nature-Based, Which Makes Them Harder to Scale

SOCIAL CAPITAL

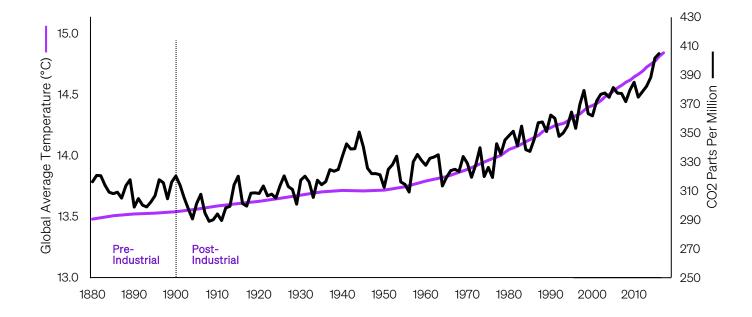
Dive Deeper...

Further Reading & Watching

Reading:

- What Are Scope 1, 2 and 3 Carbon Emissions? National Grid
- Long-Term Carbon Offsets Outlook 2023 Bloomberg
- <u>Carbon Credits Prices in the Voluntary Carbon Market</u> Abatable

Watching:


- <u>Scope 1, 2, and 3 Emissions Explained</u> Climate Now
- <u>Carbon Credits Explained</u> South Pole
- <u>The Carbon Offset Problem</u> Wendover Productions

SOCIAL CAPITAL_

Wrapping up...

CHAPTER 09

Rising Atmospheric Greenhouse Gas Concentrations and Global Temperatures Presents a Risk of Dangerous Warming

Reaching Net Zero GHG Emissions Will Require an Energy Transition Across Every Major Sector

Sector	Source of Emissions	Solution
Transportation	Fossil Fuels	Electrification, Hydrogen, Sustainable Fuels
Electric Power	Fossil Fuels	Renewables & Nuclear
Industry	Fossil Fuels	Electrification, Hydrogen & Carbon Capture
Commercial & Residential	Fossil Fuels	Electrification
Agriculture	Soil Management & Livestock	Sustainable Agriculture & Dietary Change

Future Deep Dives

Month	Theme	Deep-Dive	Summary
Dec	Energy Transition	The Global Energy Transition	What is climate change and why is it happening? Where are global carbon emissions coming from? What are the key pieces of legislation we have implemented to solve this?
Jan	Deep Tech	A Primer on Artificial Intelligence	What is Artificial Intelligence and what are the different types? How do the various models work? How is value created? What are the risks?
Feb	Life Sciences	The Business Model of Healthcare	What are the incentives that drive the behavior and outcomes of drug companies, insurers and hospitals? What new disruptions are at hand?
Mar	Economic Analysis	'Go Woke, Go Broke'?	Which companies have 'gone woke' and why? Where has this business strategy succeeded and failed? Do companies that 'go woke' underperform their peers?
Apr	Energy Transition	Residential Solar and the Future of Energy	Outline of the solar value chain, industry trends, and how residential solar could disrupt traditional utilities.
May	Deep Tech	The Future of Space	What are the legacy and emerging business models built around space? How do we get to space today? What will space look like tomorrow?
Jun	Life Sciences	The Economics of Drug Development	How do the economics of drug companies work? Why have biotech sector returns been so poor over the past decade?
Jul	Socio-Political Trends	Is India the Next Economic Giant?	Where is India's economy today and where might it be tomorrow? What are the key demographic and social factors that are driving the country's development?
Aug	Energy Transition	Replacing Animal Meats	What are global trends driving protein demand? Do we need plant-based meat? What are the challenges to production and adoption?
Sep	Deep Tech	Moore's Law and Next Steps for Silicon	What is Moore's Law and has it broken down? What are the different types of semiconductors? Why are companies moving towards more custom-designed silicon?
Oct	Economic Analysis	When Companies Go 'Ex-Growth'	What does it mean for a company to go 'ex-growth'? Why does it happen? What are the implications for valuation? How can companies respond?
Nov	Socio-Political Trends	A Demographic and Social Breakdown of America	Where is America today? A visual representation of our democracy, demography, economy, quality of life, progress and more.

This document is provided for educational purposes only. Nothing contained in this document is investment advice, a recommendation or an offer to sell, or a solicitation of an offer to buy, any securities or investment products. References herein to specific sectors are not to be considered a recommendation or solicitation for any such sector. Additionally, the contents herein are not to be construed as legal, business, or tax advice.

Statements in this document are made as of the date of this document unless stated otherwise, and there is no implication that the information contained herein is correct as of any other time. Certain information contained or linked to in this document has been obtained from sources believed to be reliable and current, but accuracy cannot be guaranteed.

This document contains statements that are not purely historical in nature but are "forwardlooking statements" or statements of opinion or intention. Any projections included herein are also forward-looking statements. Forward-looking statements involve known and unknown risks, uncertainties (including those related to general economic conditions), assumptions and other factors, which may cause actual results, performance or achievements to be materially different from those expressed or implied by such forward-looking statements. Accordingly, all forward-looking statements should be evaluated with an understanding of their inherent uncertainty and recipients should not rely on such forward-looking statements. There is no obligation to update or revise these forward-looking statements for any reason.

This document also contains references to trademarks, service marks, trade names and copyrights of other companies, which are the property of their respective owners. Solely for convenience, trademarks and trade names referred to in this document may appear without the [®] or [™] symbols, but such references are not intended to indicate, in any way, that such owner will not assert, to the fullest extent under applicable law, its rights or the right of the applicable licensor to these trademarks and trade names.

Disclaimer