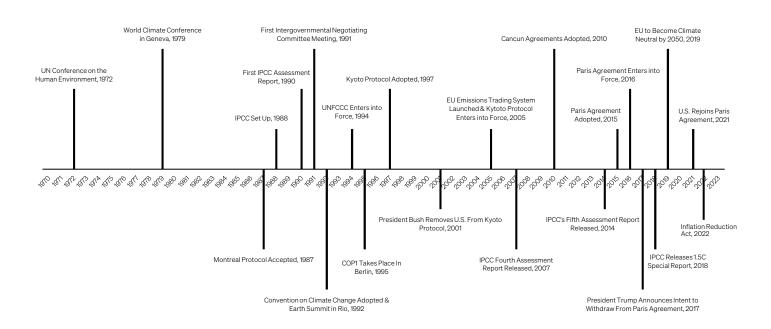
The Inflation Reduction Act

SOCIAL CAPITAL_

How to Read This Presentation

- This is the second of two presentations covering the global energy transition.
- This presentation provides an overview of global climate policy and a deep dive into the implications of the Inflation Reduction Act, which is a critical piece of U.S. climate policy.
- You should read our 101 presentation on the global energy transition first, since this
 provides useful context on the origins of the global climate challenge and potential
 solutions to reach net-zero emissions.
- By the end of this presentation, you should have a good understanding of the Inflation Reduction Act, how it aims to accelerate the U.S energy transition, and its implications for key energy transition sectors.

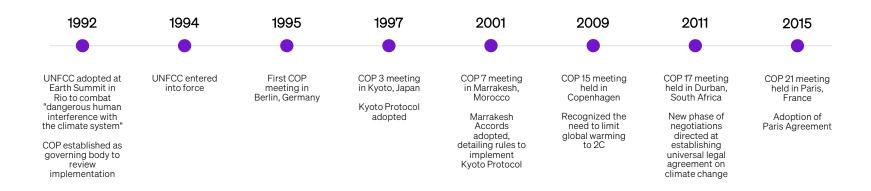
Table of Contents

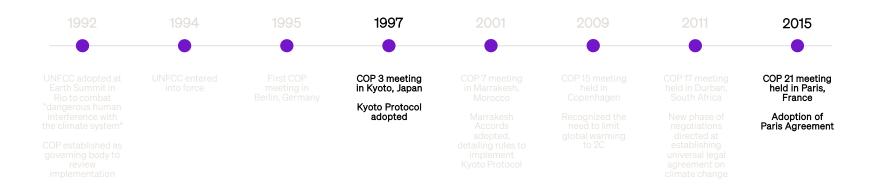

Chapter		
01	A short history of global climate policy ————————————————————————————————————	04
02	Understanding the Inflation Reduction Act ———————————————————————————————————	11
03	Implications for U.S. manufacturing	22
04	Implications for clean energy ————————————————————————————————————	32
05	Implications for energy storage ————————————————————————————————————	38
06	Implications for electric vehicles	45
07	Implications for critical materials	51
80	Implications for carbon capture ————————————————————————————————————	60
09	Implications for clean hydrogen ————————————————————————————————————	66
10	Implications for consumer homes —	74
11	Wrapping up	77

CHAPTER 01

A short history of global climate policy

The World Has Been Discussing Climate Change Since the 1970s


Timeline of Global Climate Action


The United Nations Framework
Convention on Climate Change (UNFCC)
was established in 1992 to negotiate a
global response to climate change

Countries Make Decisions for the UNFCC at the Conference of the Parties (COP)

Timeline of Major COP Milestones

Two Significant Climate Actions Emerged From COP Meetings

The Kyoto Protocol Set Binding Emissions Reduction Targets For Developed Countries

Key Developments and Provisions of Kyoto Protocol

Created in 1997 at third Conference of the Parties (COP) in Japan

Ratification process 1998-2004, and entered into force in 2005

First commitment period from 2008-2012

Participating countries aimed to reduce emissions by an average of 5% below 1990 levels

Second commitment period launched from 2013-2020

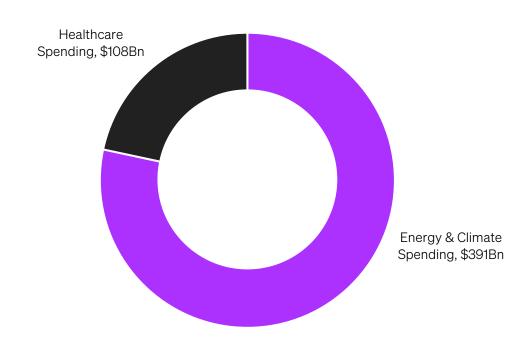
Participating countries committed to reduce GHG emissions by at least 18% below 1990 levels

And the Paris Climate Accord Commits Countries to Achieving Net Zero Emissions by 2050

Three Key Provisions of the Paris Agreement

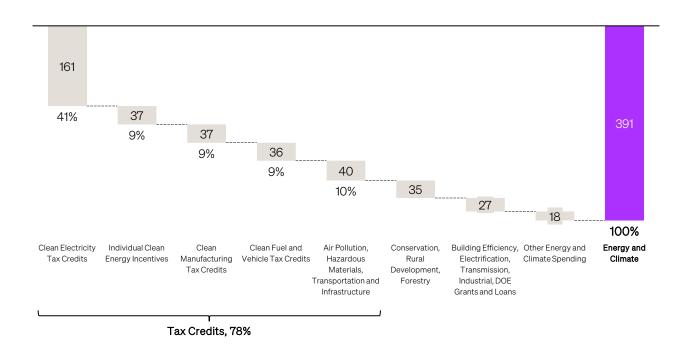
Keeping global temperature increase well below 2°C above pre-industrial levels and aiming for below 1.5°C

Adapting to climate change and reduced greenhouse gases without threatening food production

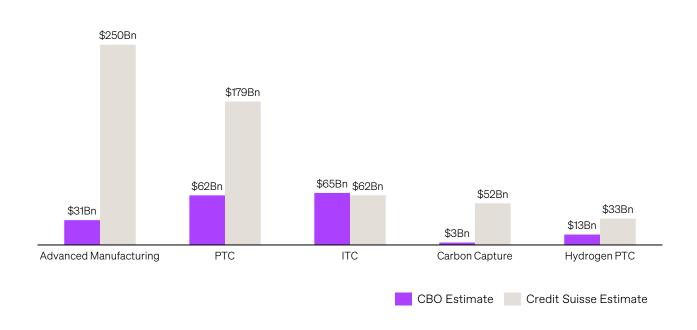

Making finance flows consistent with a pathway towards low greenhouse gases and climateresilient development CHAPTER 02

Understanding the Inflation Reduction Act

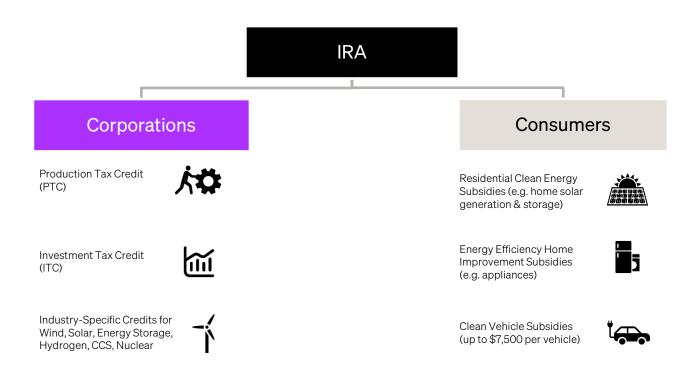
The U.S. is formally committed to net-zero emissions by 2050


How will the U.S. achieve this?

The Inflation Reduction Act Directs \$391Bn of Spending Towards Energy and Climate


\$311Bn of IRA Energy and Climate Spending Will Be Directed Towards Tax Credits

Inflation Reduction Act Summary (\$Bn)



But Since Many Credits Are Uncapped, Actual Spending Could be 3x the CBO Estimate

2/3 of IRA Spending is Uncapped

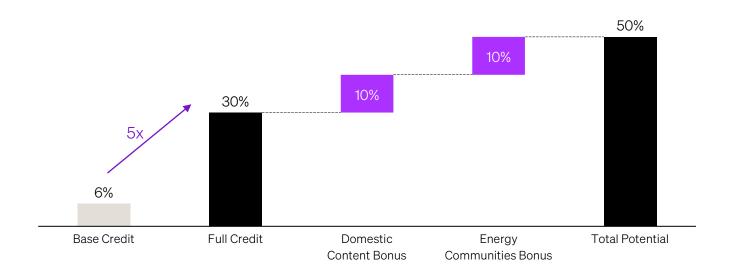
The IRA Offers Tax Credits to Both Corporations and Consumers

Corporations Can Apply For Either Production or Investment Tax Credits

IRA Tax Credit Section

		2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
	Renewable Electricity	45	45	45Y							
	Advanced Coal	45A	45A	45A	45A	45A	45A	45A	45A	45A	45A
	Carbon Capture	45Q	45Q	45Q	45Q	45Q	45Q	45Q	45Q	45Q	45Q
Production	Zero Emissions Nuclear	45J/U	45J/U	45U							
Tax Credits	Clean Hydrogen	45V	45V	45V	45V	45V	45V	45V	45V	45V	45V
	Commercial Clean Ventures	45W	45W	45W	45W	45W	45W	45W	45W	45W	45W
	Advanced Manufacturing	45X	45X	45X	45X	45X	45X	45X	45X	45X	45X
	Sustainable Aviation Fuel	40B	40B	45Z	45Z						
	Renewable Electricity	48	48	48E							
Investment	Alternative Fuel Refueling Property	30C	30C	30C	30C	30C	30C	30C	30C	30C	30C
Tax Credits	Advanced Energy Project	48C	48C	48C	48C	48C	48C	48C	48C	48C	48C
	Energy Efficient Commercial Building	179D	179D	179D	179D	179D	179D	179D	179D	179D	179D
	Energy Efficient Home Improvement	25C	25C	25C	25C	25C	25C	25C	25C	25C	25C
For Consumers	Residential Clean Energy	25D	25D	25D	25D	25D	25D	25D	25D	25D	25D
	Clean Vehicle	30D	30D	30D	30D	30D	30D	30D	30D	30D	30D

And Have Two Alternatives to Monetize Tax Credits

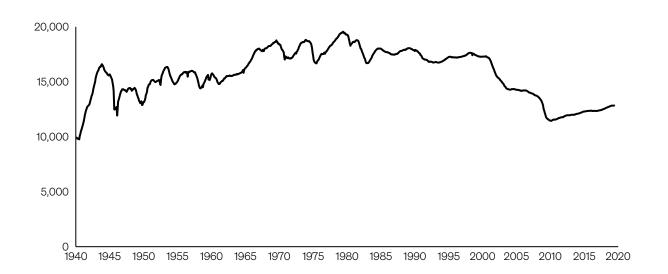

Monetization Scheme	Description
Direct Pay Credits Income-tax exempt entities can claim the tax credit as a direct payment from the IRS	 Available to tax-exempt entities, state or local governments (or their political subdivisions), the Tennessee Valley Authority, any Indian tribal government, or any Alaska Native Corporation Other taxpayers may only elect direct pay for: 45V (clean hydrogen) 45Q (carbon capture & sequestration) 45X (advanced manufacturing)
Transfers Credit owners can sell credits to other taxpayers who have tax liabilities to offset	 Available to any taxpayer other than those entitled to direct payments Taxpayers may make an annual election to transfer all (or any portion) of an eligible credit to an unrelated taxpayer, provided the transfer is: Paid in cash Not included in the transferor's gross income Not deductible by the transferee
	 This provision may not eliminate traditional tax equity structures, as it does not address the monetization of tax depreciation benefits

'Multipliers' Can Increase the Value of Tax Credits By Up To 5x

Type of Multiplier	Description				
Wage & Apprenticeship	 Wage requirement: laborers and mechanics employed must be paid wages at not less than prevailing rates Apprenticeship requirement: Minimum hours (10-15%) performed by qualified apprentices For contractors with more than 4 employees, 1 in every 4 must be engaged in qualified apprenticeship Failure to satisfy the wage and apprenticeship requirements may be cured through additional payments to workers and the government 				
Domestic Content	 Steel, iron produced in the U.S. Manufactured components produced in the US 1. 40% of costs attributed to components mined, produced or manufactured in the U.S. 2. 20% threshold in the case of offshore wind facilities 				
Location Requirements	 Brownfield sites Areas with significant employment (post-1999) related to extraction, processing, transport, or storage of coal, oil or natural gas Any census tract (or adjoining tract) that had either a coal mine close after 1999 or coal-fired electric generating unit retire after 2009 				

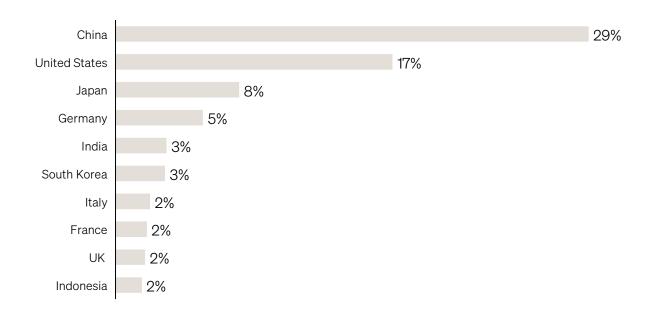
Meaning That ~30-50% of the Upfront Capex for Eligible Projects Could be Subsidized by IRA Credits

Illustrative Build-Up of Investment Tax Credit

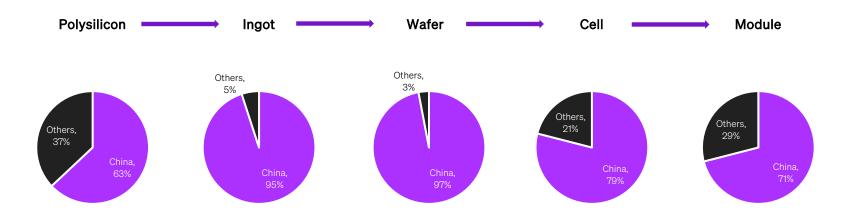

CHAPTER 03

Implications for U.S. manufacturing

Reshoring of U.S. manufacturing will be a critical theme over the next decade


U.S. Domestic Manufacturing Has Been in Decline For Decades

Workers Employed in Manufacturing Sector (Thousands)

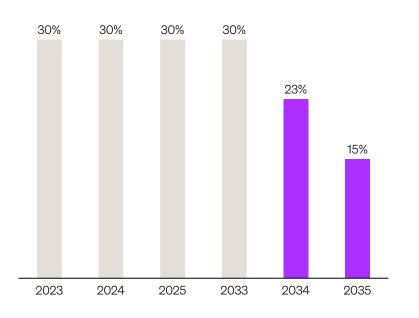

China Has Overtaken the U.S. as the World's Manufacturing Leader

Top 10 Countries by Share of Global Manufacturing Output in 2019

And Now Dominates Manufacturing of Many Energy Transition Technologies

China Share of Production Volumes Across Solar Value Chain, 2019

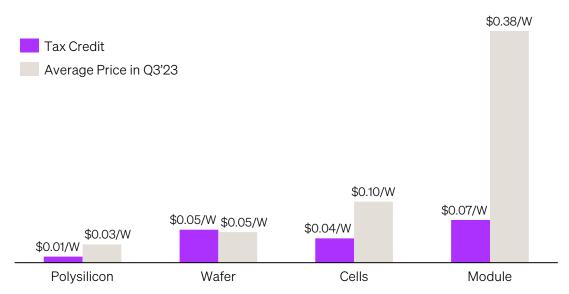
The IRA Offers \$ / Unit Subsidies for Many Key Inputs to Energy Transition Technologies


Advanced Manufacturing Credit Pay Rates

- For Wind, Solar, and Energy Storage, credits are set on a \$/unit
- For Critical Minerals projects, credit is set at 10% of "costs incurred by taxpayer with respect to production of such mineral"
- Requires meeting wage & apprenticeship requirements; +10% bonus available for projects meeting domestic wage requirements
- Eligible for Direct Payments (i.e. companies can capture full credit value, even if it exceeds the federal income taxes they owe)

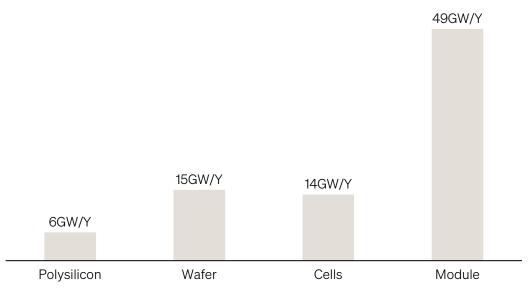
Eligible Components	Definition	Credit Amount
PV Module & Subcomponents	S	7 2
Solar-Grade Polysilicon	Highly purified silicon suitable for photovoltaic manufacturing	\$3/kg
PV Wafer	Thin slice of semiconductor material used to manufacture PV cells	\$12/m2
PV Cell	Smallest element of solar module that converts light into electricity	4c/Wdc
Polymeric Backsheet	Sheet on the back of solar module that acts as insulator	40c/m2
PV Module	Connection and lamination of PV cells into final assembly	7c/Wdc
PV Inverter		
Central Inverter	Converts DC into AC electricity, suitable for large utility-scale systems	0.25c/Wac
Utility Inverter	Inverter suitable for commercial or utility scale systems	1.5c/Wac
Commercial Inverter	Inverter suitable for commercial or utility scale systems	2.0c/Wac
Residential Inverter	Inverter suitable for residence	6.5c/Wac
Microinverter	Inverter suitable to connect with a single solar module	11c/Wac
PV Tracking Systems		
Torque Tube	Structural support element part of a solar tracker	87c/kg
Structural Fasteners	Connects system components of solar tracker to foundation	\$2.28/kg
Batteries		
Electrode Active Materials	Cathode & anode materials, anode foils, and other active materials	0.1
Battery Cells	Battery cell with 1 or more positive and negative electrodes	\$35/kWh
Battery Module	2 or more battery cells configured electrically	\$10
Battery Module	Module that doesn't use cells	\$45/kWh
Critical Materials	Mining of materials primarily related to the Solar PV chain	10%
Wind		
Wind Blade	Wind turbine blade	2.0c/W
Wind Nacelle	Cover housing generating components within a wind turbine	5.0c/W
Wind Tower	Tubular structure supporting the turbine	3.0c/W
Offshore Foundation (Fixed)	Tower base fixed to sea floor	2.0c/W
Offshore Foundation (Floating)	Tower base attached to sea floor using cables	4.0c/W
Offshore Wind Vessel	Rigs equipped with large cranes for offshore turbine installation	10%

And Investment Tax Credits For Eligible Energy Projects


ITC Option: Advanced Energy Project Credit (48C)

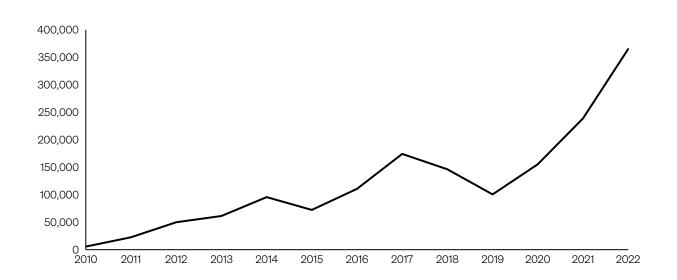
- ITC Full Credit of 30% (5x Base Credit of 6%)
- Eligible for property used in a "qualifying advanced energy project" that is certified by the U.S. DOE
- \$10B total allocation (of which \$4Bn must be allocated to projects located in energy communities)
- Requires meeting wage & apprenticeship requirements; 10% bonus available for projects meeting domestic content requirements
- Eligible companies must be involved in the production or recycling of energy storage systems, grid modernization systems, CO2 sequestration, energy conservation, EVs and charging infrastructure, industrial GHG emission reduction, and critical materials

This Makes Domestic Production of Energy Transition Inputs Much More Competitive


IRA Solar Manufacturing Tax Credits vs Average Component Prices (\$/W)

 $Note: \ \ Conversion factor \ of .6g/W \ used for polysilicon. Assumes a conversion factor for wafers of 7.69 piece per watt based on PERC cell efficiency of 23.3\% \ \ conversion factor for wafers of 1.6g/W \ used for polysilicon. Assumes a conversion factor for wafers of 1.6g/W \ used for polysilicon. Assumes a conversion factor for wafers of 1.6g/W \ used for polysilicon. Assumes a conversion factor for wafers of 1.6g/W \ used for polysilicon. Assumes a conversion factor for wafers of 1.6g/W \ used for polysilicon. Assumes a conversion factor for wafers of 1.6g/W \ used for polysilicon. Assumes a conversion factor for wafers of 1.6g/W \ used for polysilicon. Assumes a conversion factor for wafers of 1.6g/W \ used for polysilicon. Assumes a conversion factor for wafers of 1.6g/W \ used for polysilicon. Assumes a conversion factor for wafers of 1.6g/W \ used for polysilicon. Assumes a conversion factor for wafers of 1.6g/W \ used for polysilicon. Assumes a conversion factor for wafers of 1.6g/W \ used for polysilicon factor for wafers of 1.6g/W \ used for polysilicon factor for wafers of 1.6g/W \ used for polysilicon factor for wafers of 1.6g/W \ used for polysilicon factor for wafers of 1.6g/W \ used for polysilicon factor for wafers of 1.6g/W \ used for polysilicon factor for wafers of 1.6g/W \ used for polysilicon factor for wafers of 1.6g/W \ used for polysilicon factor for water factor for water factor for water factor for water factor factor for water factor fa$

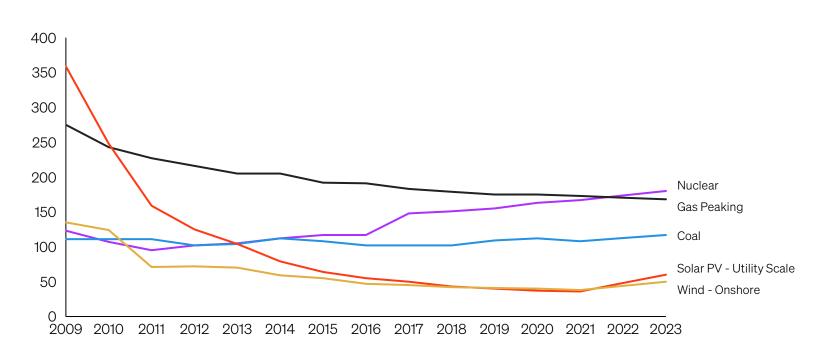
Companies Are Responding by Announcing New Domestic Factories


Announced U.S. Solar Capacity (GW/Year)

Note: As of July 24, 2023

And New Domestic Manufacturing Jobs

Manufacturing Job Announcements, Reshoring + Foreign Direct Investment


CHAPTER 04

Implications for clean energy

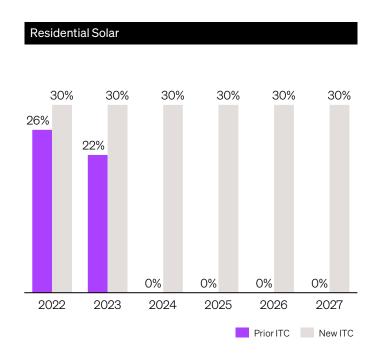
Solar is positioned to be the dominant form of new electricity generation capacity

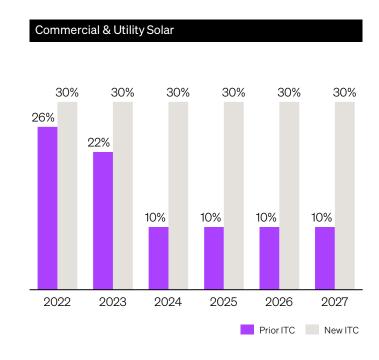
Wind and Solar Already Offer the Lowest Levelized Cost of Electricity Production

Levelized Cost of Energy (\$ / MWh)

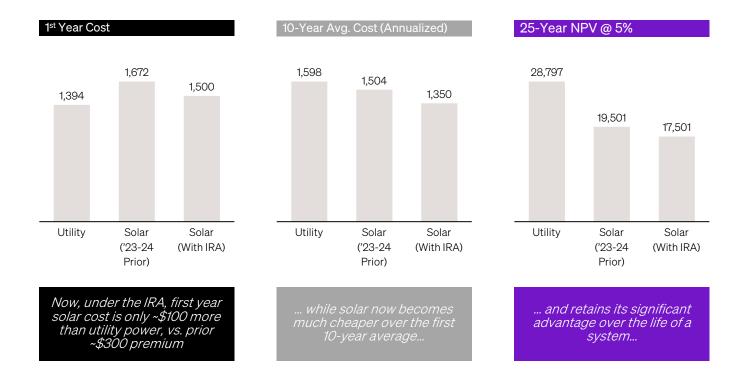
The IRA Offers Both Production and Investment Tax Credits For Solar Generation Capacity

Production Tax Credit (45Y)


- PTC is 0.3c/kWh Base Credit up to 1.5c/kWh Full credit, for up to 10-years from the start of production
- Full credit requires meeting wage & apprenticeship requirements
- Generally eligible for bonus credits for domestic content and project location (e.g. Energy Communities)
- To be phased out over 3 years

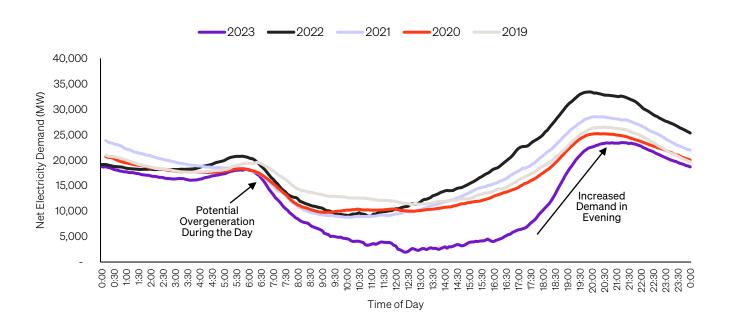

Investment Tax Credit (48E)

- 6% Base Credit up to 30% Full credit
- Full credit requires meeting wage & apprenticeship requirements
- Generally eligible for bonus credits for domestic content and project location (e.g. Energy Communities)
- To be phased out over 3 years, starting at the earlier of i) 2032, or ii) when the Secretary of Energy determines that annual GHG emissions from the production of electricity have been reduced by >75% vs. 2022 levels
- Subject to recapture if a facility's actual CO2 equivalent emissions are greater than 10g of CO2e per kWh


The Investment Tax Credit Boosts and Extends Existing Subsidies for Solar

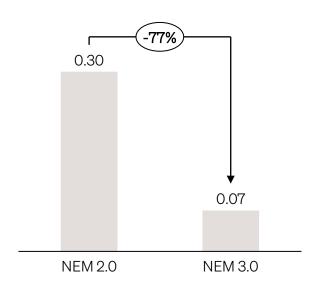
New vs. Prior Rates for Solar ITC

Making the Upfront Cost of Solar Much More Competitive


CHAPTER 05

Implications for energy storage

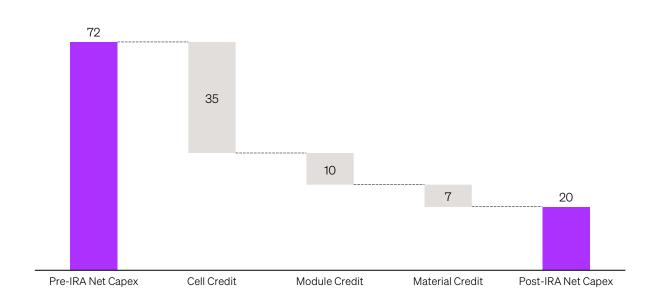
Energy storage will become a musthave component for onshore renewables


Adding Renewable Energy Sources Risks Oversupplying the Grid During the Day When Energy Demand is Lower, Resulting in Wasted Power Generation

California Net Electricity Demand (MW)

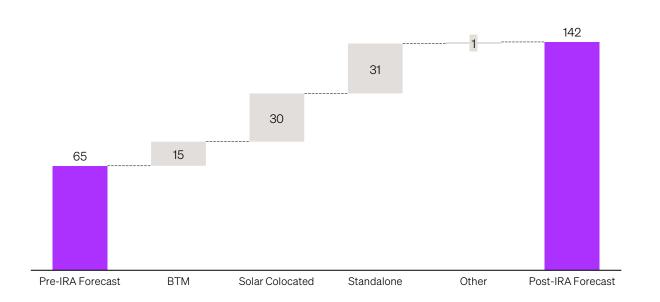
States Are Responding By Changing Net Metering Rules to Incentivize Battery Storage

PG&E California Export Rate (\$/kWh)


- 'Net Energy Metering' allows consumers to earn a rebate for excess electricity they generate and export to the grid, offsetting their electricity bill
- NEM 3.0 reduces the rate at which consumers can export electricity to the grid by +75%
- Battery storage allows consumers to store electricity during periods of surplus and either use or export it during peak demand
- At new export rates, batter storage materially improves the payback period for a new solar system
- Incentivizing battery storage reduces the risk of oversupplying the grid during periods of peak generation and minimal demand

The IRA Offers Credits to Incentivize Battery Production and Attach Rates

	48E (ITC)	25D (ITC)	45X (PTC)
Summary	 Technology-neutral clean electricity credit Max value of 30% through 2022 Storage capacity must be at least 5kwh 	 30% on battery storage technology expenditures made on U.S. residences Max credit must be placed in service by 2023 Step down credits are eligible through 2034 Second homes qualify Storage capacity must be at least 3kwh 	 For battery producers \$35/kwh of capacity for cells \$10/kwh of capacity for modules +10% bonus of total production cost if critical mineral requirement is met
Primary Beneficiaries	Project DevelopersIPPsUtilitiesC&U Customers	 Individual Taxpayers 	Battery Manufacturers


This is Expected to Materially Improve the Economics of Domestic Battery Production

Capital Requirements for U.S. Battery Production (\$ / kWh)

And Double the Rate of Battery Storage Capacity in the U.S.

U.S. Energy Storage Additions Through 2030 (kW)

CHAPTER 06

Implications for electric vehicles

EVs are cost competitive with gasoline and diesel cars

IRA Awards Up To \$7,500 EV Tax Credit Split Into Two Sourcing Criteria

- Sourcing of Critical Minerals \$3,750
- % of value of critical minerals mined or processed in the U.S. or FTA countries, or recycled in North America: 40% in 2024 to 80% in 2027 and beyond (gradually increased)
- No critical minerals sourced from Foreign Entity of Concern as of 2024

- 2. Manufacture of Battery Components \$3,750
- % of value of battery components manufactured or assembled in North America: 50% in 2024 to 100% in 2029 (gradually increased)
- No battery components sourced from Foreign Entity of Concern as of 2025

Maximum Suggested RRP

SUVs, Vans & Pickup Trucks	\$80k	
Other Vehicles	\$55k	

Income Cap

Filing Jointly	\$300k
Head of Household	\$225k
Single	\$150k

And Up To \$4,000 For the Purchase of Used EVs

Credit is lesser of 30% of sales price or \$4,000

Vehicle Price

Less than \$25,000

Vehicle Age

Greater than 2 years old

Vehicle Weight

Less than 14,000 lbs

Income Bracket

Filing Jointly	\$150k
Head of Household	\$112.5k
Single	\$75k

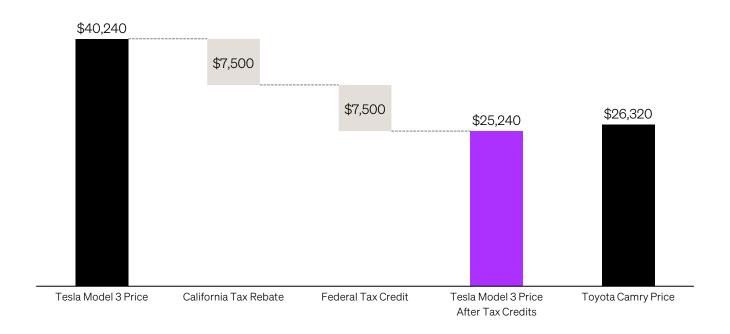
Vehicle Engine

- Propelled to a significant extent by electric motor + battery combo
- Capacity >7 kWh
- Capable of being recharged from external source of electricity

Commercial EVs Are Eligible For Tax Credits For First Time Ever

Credit is lesser of 30% of sales price or difference between the purchase price of the EV and a comparable internal combustion engine vehicle

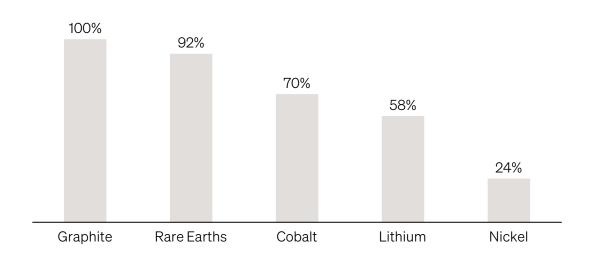
Vehicle Weight & Cost


- Up to \$7,500 for vehicles weighing less than 14,000 lbs
- Up to \$40,000 for vehicles weighing more than 14,000 lbs

Vehicle Purpose

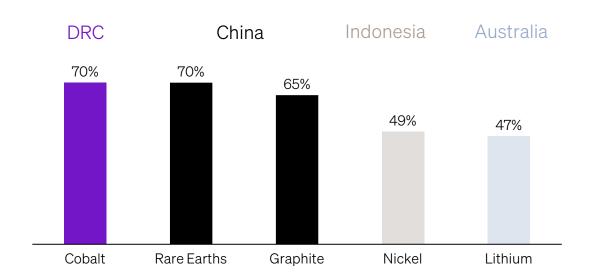
 Vehicle must be used for business purposes

New Consumer EVs are Now Cost Competitive With Gasoline and Diesel Cars


CHAPTER 07

Implications for critical materials

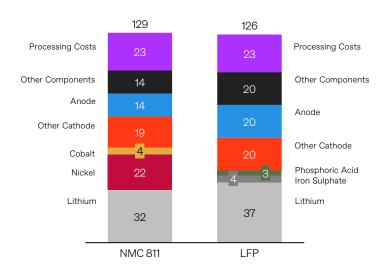
Global critical material flows will shift away from China and other 'countries of concern'


A Significant Proportion of Battery Metals Processing is Completed in China

% of Critical Materials Processed in China



And China Dominates Rare Earths and Graphite Mining


% of Critical Material Mined in Each Country

Lithium, Nickel and Graphite Are Key Input Materials for Battery Manufacturers

EV Battery Cell Cost Breakdown (\$ / kWh)

Investment 30D Tax Credit Production 45X Tax Credit

EV Tax Credit and Upstream Critical Materials Producer Incentive Will Strongly Incentivize U.S. OEMs to Source Locally

1.	2.
EV OEM / Consumer Incentive EV Tax Credit	Upstream Critical Materials Producer Incentive
 Auto & battery contents (\$3,750 each) must meet growing requirements for sourcing from 	 10% Production Tax Credit (PTC) available to producers (e.g., US- based lithium mines)
U.S. FTA countries and/or North America	 Measured against the 'costs incurred by the taxpayer' for the
 Autos are disqualified from both credits if <u>any</u> critical minerals in the battery are sourced from a 	relevant critical minerals

'foreign entity of concern' (e.g.,

China, Russia)

U.S. FTA Countries:

- Resource-Rich: Canada, Australia, Chile, Peru
- Advanced Industry: Korea, Mexico, Israel, Singapore
- Others: Bahrain, Colombia, Costa Rica, Dominican Republic, El Salvador, Guatemala, Honduras, Jordan, Morocco, Nicaragua, Oman, Panama

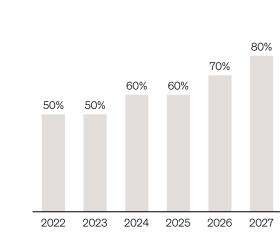
U.S. List of Critical Materials:

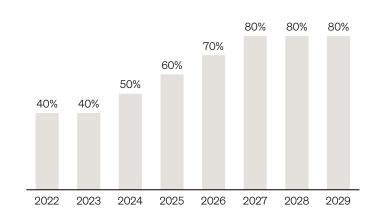
- Battery Metals: Lithium, Nickel, Manganese, Cobalt, Graphite
- Other Metals: Aluminium, Zinc, Titanium, Magnesium, PGMs, Tin, Tungsten, Vanadium
- Rare Earths

U.S. List of 'Countries of Concern'

 Burma, China, Eritrea, Iran, North Korea, Pakistan, Russia, Saudi Arabia, Taiikistan, Turkmenistan

To Be Eligible for the \$7,500 EV Tax Credit, OEMs Must Meet Growing Requirements To Source From U.S. FTA Countries and/or North America


Critical Minerals Requirement, % of Value


Vehicle: \$3,750 Tax Credit Required Mining or Processing in the U.S. or FTA countries or recycled in North America

Battery Manufacturing/Assembly Requirement, % of Value

Battery: \$3,750 Tax Credit Required Manufactured or Assembled in North America

2029

100%

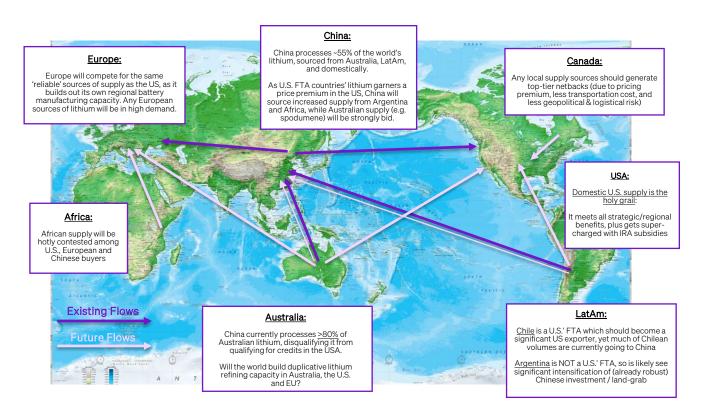
90%

2028

Avoiding 'Countries of Concern' in the EV Battery Supply Chain Will Be Difficult

U.S. FTA Countries:

- Resource-Rich: Canada, Australia, Chile, Peru
- Advanced Industry: Korea, Mexico, Israel, Singapore
- Others: Bahrain, Colombia, Costa Rica, Dominican Republic, El Salvador, Guatemala, Honduras, Jordan, Morocco, Nicaragua, Oman, Panama

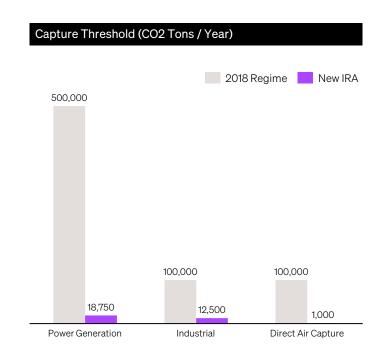

U.S. List of Critical Materials:

- Battery Metals: Lithium, Nickel, Manganese, Cobalt, Graphite
- Other Metals: Aluminium, Zinc, Titanium, Magnesium, PGMs, Tin, Tungsten, Vanadium
- Rare Earths

U.S. List of 'Countries of Concern'

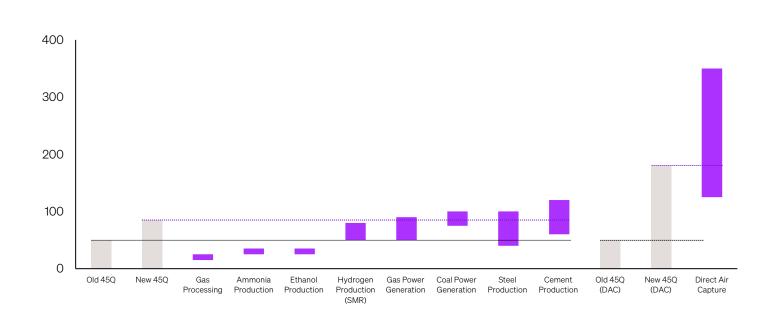
Burma, China, Eritrea, Iran, North Korea, Pakistan, Russia, Saudi Arabia, Taiikistan, Turkmenistan

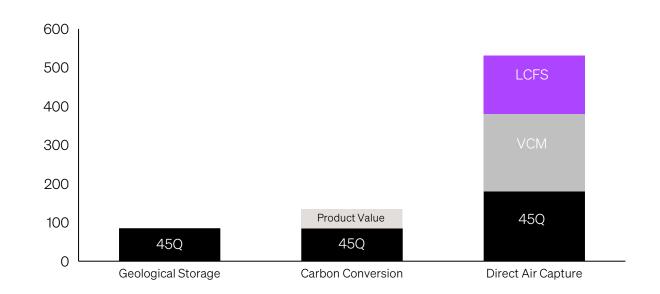
Meeting IRA Sourcing Requirements Will Drive Re-Plumbing of Global Metal Flows


CHAPTER 08

Implications for carbon capture

Capturing carbon is now economically viable across a wide range of sectors


The IRA Significantly Expands the Prior Carbon Capture Credit System


Which Makes it Cheaper to Decarbonize Many Previously Hard to Abate Sectors

Levelized Cost of Capture Range vs. Credit Value

45Q Credits Can Be Combined With Non-Federal Credits Like Low Carbon Fuel Standard (LCFS) and Voluntary Carbon Market (VCM) Credits

Illustrative Revenue Stacks for Carbon Capture (\$ / ton)

Credits Can Become a Key Revenue Stream For Companies That Use Carbon to Produce and Sell Real World Products

Feedstock = 'Waste'

Industrial Plant

Revenue Sources

- CO2 Input (e.g. Flue Gas, DAC)
- Mineral Feedstock Input
- Typically, Calcium- or Magnesium-based)
- E.g. Steel Slag, Fly Ash, Mine Tailings, Cement Waste, HCL

Chemical reaction of CO2 with calcium or magnesium binder

- 'Real world product' often based on calcium carbonate
- 45Q credit (\$60/ton for utilization)
- Calcium carbonate → limestone (cement), wallboard, pigments
- Magnesium carbonate → fire retardant, plasterboard, food additives

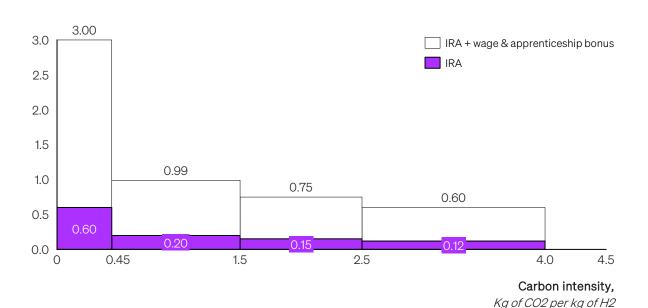
CHAPTER 09

Implications for clean hydrogen

Blue and green hydrogen will become competitive with grey hydrogen

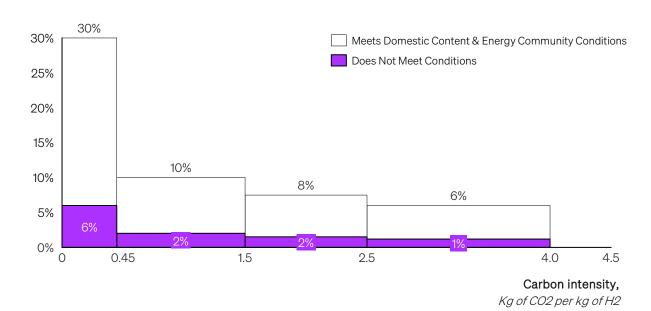
There are Four Main Types of Hydrogen

Brown	Grey	Blue	Green
Derived from black coal or ligniteReleases carbon	 Derived from natural gas using steam methane reformation 	 Derived from natural gas using same chemical process as grey 	 Derived by splitting water into hydrogen and oxygen using electrolysis
dioxide and carbon monoxide into the atmosphere • Least	 Releases carbon dioxide into the atmosphere 	 Use of carbon capture and storage to capture CO2 by- product 	 Powered by clean electricity from renewable energy sources
environmentally friendly	 Better than coal but still highly-emissive 	 Better than grey but still produces GHGs 	 Most environmentally friendly
		CO ₂	


U.S. Department of Energy Makes Clean Hydrogen Production a Strategic Priority

Goal to produce 50 Mt of clean hydrogen annually by 2050

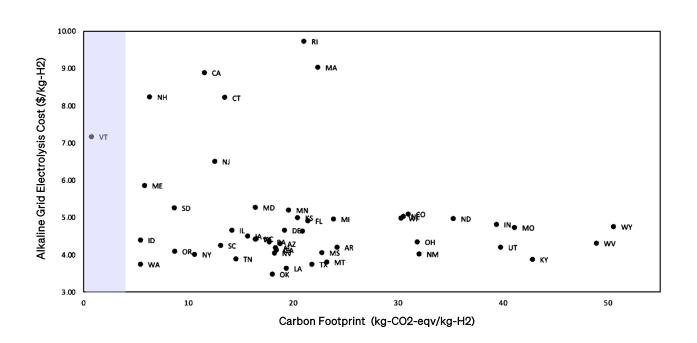
1.	2.	3.
High-Impact H2 Uses September 2022	The 'Hydrogen Shot' June 2021	Four Regional 'H2 Hubs' BIL - November 2021
 Decarbonizing segments such as in industry and heavy-duty transportation that are difficult to electrify 	 Reducing the cost of clean hydrogen to \$1 for 1kg within a decade Interim goal of \$2/kg by 2026, by reducing: The cost of electrolyzers The cost of CO2 transport and storage 	 Creating at least 4 regional hubs to produce clean hydrogen, with at least one hub proposal from each of three production routes Fossil fuels Renewables Nuclear energy Each of the hubs should aim for different uses for clean hydrogen Power generation Industrial manufacturing Residential & commercial heating Transport


IRA Directly Subsidizes Clean Hydrogen Production Based Upon Carbon Intensity

Amount of Production Credit Granted (\$ / kg)

And Offers Investment Tax Credits For Domestic Clean H2 Production & Storage Facilities

% of Oualified Investment Costs

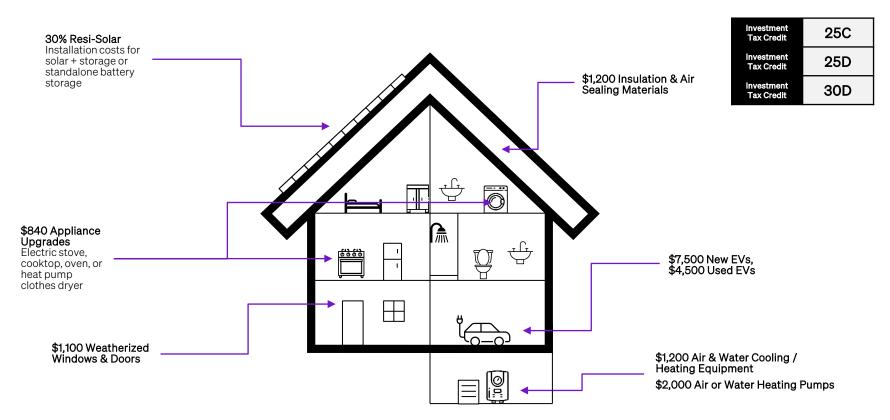


Clean Hydrogen Can Help to Decarbonize Hard to Abate Emissions Across Sectors

Industry	Transportation	Energy
Hydrogen can replace coal as the reducing agent in steel production	Hydrogen fuel cells can provide range and fast refueling for heavy duty vehicles	Hydrogen can be produced and to store energy during periods of excess energy generation
Hydrogen is a key feedstock for producing ammonia which is used in fertilizer	Hydrogen and derived fuels can help to decarbonize shipping and aviation	Hydrogen can replace or be blended with natural gas for heating

But Cheaper Renewables Will Be Required to Enable Competitive Green Hydrogen

Only Vermont at >\$7/kg H2 would be eligible for IRA Hydrogen Credits



CHAPTER 10

Implications for consumer homes

Consumers are strongly incentivized to improve home energy efficiency

The IRA Offers Thousands of Dollars of Credits to Consumers For Home Upgrades

CHAPTER 11

Wrapping up

8 Key Takeaways of the Inflation Reduction Act

- Reshoring of U.S. manufacturing will be a critical theme over the next decade
- 2 Solar is positioned to be the dominant form of new electricity generation capacity
- 3 Energy storage will become a must-have component for onshore renewables
- 4 EVs are cost-competitive with gasoline and diesel cars
- 5 Global critical material flows will shift away from China and other 'countries of concern'
- 6 Capturing carbon is now economically viable across a wide range of sectors
- 7 Blue and green hydrogen will become competitive with grey hydrogen
- 8 Consumers are strongly incentivized to improve home efficiency

SOCIAL CAPITAL_

Future Deep Dives

Month	Theme	Deep-Dive	Summary
Dec	Energy Transition	The Global Energy Transition	What is climate change and why is it happening? Where are global carbon emissions coming from? What are the key pieces of legislation we have implemented to solve this?
Jan	Deep Tech	A Primer on Artificial Intelligence	What is Artificial Intelligence and what are the different types? How do the various models work? How is value created? What are the risks?
Feb	Life Sciences	The Business Model of Healthcare	What are the incentives that drive the behavior and outcomes of drug companies, insurers and hospitals? What new disruptions are at hand?
Mar	Economic Analysis	'Go Woke, Go Broke'?	Which companies have 'gone woke' and why? Where has this business strategy succeeded and failed? Do companies that 'go woke' underperform their peers?
Apr	Energy Transition	Residential Solar and the Future of Energy	Outline of the solar value chain, industry trends, and how residential solar could disrupt traditional utilities.
May	Deep Tech	The Future of Space	What are the legacy and emerging business models built around space? How do we get to space today? What will space look like tomorrow?
Jun	Life Sciences	The Economics of Drug Development	How do the economics of drug companies work? Why have biotech sector returns been so poor over the past decade?
Jul	Socio-Political Trends	Is India the Next Economic Giant?	Where is India's economy today and where might it be tomorrow? What are the key demographic and social factors that are driving the country's development?
Aug	Energy Transition	Replacing Animal Meats	What are global trends driving protein demand? Do we need plant-based meat? What are the challenges to production and adoption?
Sep	Deep Tech	Moore's Law and Next Steps for Silicon	What is Moore's Law and has it broken down? What are the different types of semiconductors? Why are companies moving towards more custom-designed silicon?
Oct	Economic Analysis	When Companies Go 'Ex-Growth'	What does it mean for a company to go 'ex-growth'? Why does it happen? What are the implications for valuation? How can companies respond?
Nov	Socio-Political Trends	A Demographic and Social Breakdown of America	Where is America today? A visual representation of our democracy, demography, economy, quality of life, progress and more.

This document is provided for educational purposes only. Nothing contained in this document is investment advice, a recommendation or an offer to sell, or a solicitation of an offer to buy, any securities or investment products. References herein to specific sectors are not to be considered a recommendation or solicitation for any such sector. Additionally, the contents herein are not to be construed as legal, business, or tax advice.

Statements in this document are made as of the date of this document unless stated otherwise, and there is no implication that the information contained herein is correct as of any other time. Certain information contained or linked to in this document has been obtained from sources believed to be reliable and current, but accuracy cannot be guaranteed.

This document contains statements that are not purely historical in nature but are "forward-looking statements" or statements of opinion or intention. Any projections included herein are also forward-looking statements. Forward-looking statements involve known and unknown risks, uncertainties (including those related to general economic conditions), assumptions and other factors, which may cause actual results, performance or achievements to be materially different from those expressed or implied by such forward-looking statements. Accordingly, all forward-looking statements should be evaluated with an understanding of their inherent uncertainty and recipients should not rely on such forward-looking statements. There is no obligation to update or revise these forward-looking statements for any reason.

This document also contains references to trademarks, service marks, trade names and copyrights of other companies, which are the property of their respective owners. Solely for convenience, trademarks and trade names referred to in this document may appear without the ® or ™ symbols, but such references are not intended to indicate, in any way, that such owner will not assert, to the fullest extent under applicable law, its rights or the right of the applicable licensor to these trademarks and trade names.

Disclaimer